Sinkhorn Divergence of Topological Signature Estimates for Time Series Classification

C. Stephen
{"title":"Sinkhorn Divergence of Topological Signature Estimates for Time Series Classification","authors":"C. Stephen","doi":"10.1109/ICMLA.2018.00113","DOIUrl":null,"url":null,"abstract":"Distinguishing between classes of time series sampled from dynamic systems is a common challenge in systems and control engineering, for example in the context of health monitoring, fault detection, and quality control. The challenge is increased when no underlying model of a system is known, measurement noise is present, and long signals need to be interpreted. In this paper we address these issues with a new non parametric classifier based on topological signatures. Our model learns classes as weighted kernel density estimates (KDEs) over persistent homology diagrams and predicts new trajectory labels using Sinkhorn divergences on the space of diagram KDEs to quantify proximity. We show that this approach accurately discriminates between states of chaotic systems that are close in parameter space, and its performance is robust to noise.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"532 1","pages":"714-721"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distinguishing between classes of time series sampled from dynamic systems is a common challenge in systems and control engineering, for example in the context of health monitoring, fault detection, and quality control. The challenge is increased when no underlying model of a system is known, measurement noise is present, and long signals need to be interpreted. In this paper we address these issues with a new non parametric classifier based on topological signatures. Our model learns classes as weighted kernel density estimates (KDEs) over persistent homology diagrams and predicts new trajectory labels using Sinkhorn divergences on the space of diagram KDEs to quantify proximity. We show that this approach accurately discriminates between states of chaotic systems that are close in parameter space, and its performance is robust to noise.
时间序列分类拓扑特征估计的Sinkhorn散度
在系统和控制工程中,区分从动态系统中采样的时间序列的类别是一个常见的挑战,例如在健康监测、故障检测和质量控制的上下文中。当不知道系统的底层模型,存在测量噪声,并且需要解释长信号时,挑战就会增加。本文提出了一种基于拓扑签名的非参数分类器来解决这些问题。我们的模型在持续的同调图上学习加权核密度估计(kde)的类,并使用图kde空间上的Sinkhorn散度来预测新的轨迹标签,以量化接近度。结果表明,该方法能准确区分参数空间相近的混沌系统的状态,并且对噪声具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信