Global Well-Posedness and Asymptotic Behavior for the 2D Subcritical Dissipative Quasi-Geostrophic Equation in Critical Fourier-Besov-Morrey Spaces

Pub Date : 2023-01-01 DOI:10.4208/jpde.v36.n1.1
Achraf Azanzal, Chakir Allalou null, Adil Abbassi
{"title":"Global Well-Posedness and Asymptotic Behavior for the 2D Subcritical Dissipative Quasi-Geostrophic Equation in Critical Fourier-Besov-Morrey Spaces","authors":"Achraf Azanzal, Chakir Allalou null, Adil Abbassi","doi":"10.4208/jpde.v36.n1.1","DOIUrl":null,"url":null,"abstract":". In this paper, we study the subcritical dissipative quasi-geostrophic equation. By using the Littlewood Paley theory, Fourier analysis and standard techniques we prove that there exists v a unique global-in-time solution for small initial data be-longing to the critical Fourier-Besov-Morrey spaces FN 3 − 2 α + λ − 2 p p , λ , q . Moreover, we show the asymptotic behavior of the global solution v . i.e., k v ( t ) k FN 3 − 2 α + λ − 2 p p , λ , q decays to zero as time goes to infinity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v36.n1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we study the subcritical dissipative quasi-geostrophic equation. By using the Littlewood Paley theory, Fourier analysis and standard techniques we prove that there exists v a unique global-in-time solution for small initial data be-longing to the critical Fourier-Besov-Morrey spaces FN 3 − 2 α + λ − 2 p p , λ , q . Moreover, we show the asymptotic behavior of the global solution v . i.e., k v ( t ) k FN 3 − 2 α + λ − 2 p p , λ , q decays to zero as time goes to infinity.
分享
查看原文
临界Fourier-Besov-Morrey空间中二维次临界耗散拟地转方程的全局适定性和渐近性
. 本文研究了亚临界耗散准地转方程。利用Littlewood Paley理论、傅里叶分析和标准技术,证明了在临界傅里叶- besov - morrey空间FN 3−2 α + λ−2 p p, λ, q下存在唯一的全局实时解。此外,我们还证明了全局解v的渐近性质。即k v (t) k FN 3−2 α + λ−2 p p, λ, q随着时间趋于无穷衰减为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信