Computing discrete logarithm by interval-valued paradigm

B. Nagy, S. Vályi
{"title":"Computing discrete logarithm by interval-valued paradigm","authors":"B. Nagy, S. Vályi","doi":"10.4204/EPTCS.143.7","DOIUrl":null,"url":null,"abstract":"Interval-valued computing is a relatively new computing paradigm. It uses finitely many interval segments over the unit interval in a computation as data structure. The satisfiability of Quantified Boolean formulae and other hard problems, like integer factorization, can be solved in an effective way by its massive parallelism. The discrete logarithm problem plays an important role in practice, there are cryptographical methods based on its computational hardness. In this paper we show that the discrete logarithm problem is computable by an interval-valued computing in a polynomial number of steps (within this paradigm).","PeriodicalId":88470,"journal":{"name":"Dialogues in cardiovascular medicine : DCM","volume":"108 1","pages":"76-86"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in cardiovascular medicine : DCM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.143.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Interval-valued computing is a relatively new computing paradigm. It uses finitely many interval segments over the unit interval in a computation as data structure. The satisfiability of Quantified Boolean formulae and other hard problems, like integer factorization, can be solved in an effective way by its massive parallelism. The discrete logarithm problem plays an important role in practice, there are cryptographical methods based on its computational hardness. In this paper we show that the discrete logarithm problem is computable by an interval-valued computing in a polynomial number of steps (within this paradigm).
用区间值范式计算离散对数
区间值计算是一种相对较新的计算范式。它在一次计算的单位区间内使用有限多个区间段作为数据结构。量化布尔公式的可满足性和其他难题,如整数分解,可以通过其巨大的并行性有效地解决。离散对数问题在实际应用中起着重要的作用,基于离散对数问题的计算难度,有许多密码学方法。在本文中,我们证明离散对数问题是可计算的区间值计算在一个多项式的步骤数(在这种范式)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信