Estimation of Signal Parameters Using SSA and Unitary Root-Music

V. Vasylyshyn
{"title":"Estimation of Signal Parameters Using SSA and Unitary Root-Music","authors":"V. Vasylyshyn","doi":"10.1109/PICST47496.2019.9061460","DOIUrl":null,"url":null,"abstract":"The improving of performance of the signal parameter estimation when using SSA approach is obtained in the paper. The unitary transformation of extended data matrix obtained after SSA technique or corresponding covariance matrix is used. Such transformation reduces the computational load and improves the performance of subspace-based techniques used with SSA approach. This performance improvement is due to the so-called forward–backward averaging effect. The reduction of computational load is mainly due to the fact that the real-valued eigendecomposition instead of complex one is performed. Examples of applications of proposed approach in the modern communication systems and the ways of future investigations are considered.","PeriodicalId":6764,"journal":{"name":"2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T)","volume":"97 1","pages":"789-793"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICST47496.2019.9061460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The improving of performance of the signal parameter estimation when using SSA approach is obtained in the paper. The unitary transformation of extended data matrix obtained after SSA technique or corresponding covariance matrix is used. Such transformation reduces the computational load and improves the performance of subspace-based techniques used with SSA approach. This performance improvement is due to the so-called forward–backward averaging effect. The reduction of computational load is mainly due to the fact that the real-valued eigendecomposition instead of complex one is performed. Examples of applications of proposed approach in the modern communication systems and the ways of future investigations are considered.
基于SSA和统一根音乐的信号参数估计
结果表明,采用SSA方法可以提高信号参数估计的性能。利用SSA技术得到的扩展数据矩阵的酉变换或相应的协方差矩阵。这种转换减少了计算量,提高了基于子空间的SSA方法的性能。这种性能改进是由于所谓的前向后平均效应。计算量的减少主要是由于采用实值特征分解而不是复特征分解。本文还考虑了该方法在现代通信系统中的应用实例以及未来研究的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信