High-Dimensional Linear Regression and Phase Retrieval via PSLQ Integer Relation Algorithm

D. Gamarnik, Eren C. Kizildag
{"title":"High-Dimensional Linear Regression and Phase Retrieval via PSLQ Integer Relation Algorithm","authors":"D. Gamarnik, Eren C. Kizildag","doi":"10.1109/ISIT.2019.8849681","DOIUrl":null,"url":null,"abstract":"We study high-dimensional linear regression problem without sparsity, and address the question of efficient recovery with small number of measurements. We propose an algorithm which efficiently recovers an unknown feature vector β∗ ∈ ℝp from its linear measurements Y = Xβ∗ in polynomially many steps, with high probability (as p → ∞), even with a single measurement, provided elements of β∗ are supported on a rationally independent set of at most polynomial in p size known to learner. We use a combination of PSLQ integer relation and LLL lattice basis reduction algorithms to achieve our goal. We then apply our ideas to develop an efficient, single-sample algorithm for the phase retrieval problem, where ${\\beta ^ * } \\in {\\mathbb{C}^p}$ is to be recovered from magnitude-only observations Y = |〈X, β∗〉|.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"206 1","pages":"1437-1441"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study high-dimensional linear regression problem without sparsity, and address the question of efficient recovery with small number of measurements. We propose an algorithm which efficiently recovers an unknown feature vector β∗ ∈ ℝp from its linear measurements Y = Xβ∗ in polynomially many steps, with high probability (as p → ∞), even with a single measurement, provided elements of β∗ are supported on a rationally independent set of at most polynomial in p size known to learner. We use a combination of PSLQ integer relation and LLL lattice basis reduction algorithms to achieve our goal. We then apply our ideas to develop an efficient, single-sample algorithm for the phase retrieval problem, where ${\beta ^ * } \in {\mathbb{C}^p}$ is to be recovered from magnitude-only observations Y = |〈X, β∗〉|.
基于PSLQ整数关系算法的高维线性回归与相位检索
我们研究了无稀疏度的高维线性回归问题,并解决了用少量测量值进行有效恢复的问题。我们提出了一种算法,该算法可以有效地从其线性测量Y = Xβ∗中以多项式多步恢复未知特征向量β∗∈x p,并且具有高概率(p→∞),即使只有一次测量,只要β∗的元素被支持在学习者已知的p大小的至多个多项式的合理独立集合上。我们使用PSLQ整数关系和LLL格基约简算法的组合来实现我们的目标。然后,我们应用我们的想法来开发一种用于相位检索问题的高效单样本算法,其中${\beta ^ *} \in {\mathbb{C}^p}$将从仅值观测Y = | < X, β∗> |中恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信