Coupled and scalar asymptotic models for internal waves over variable topography

Asymptot. Anal. Pub Date : 2018-01-01 DOI:10.3233/ASY-171440
R. Lteif, Samer Israwi
{"title":"Coupled and scalar asymptotic models for internal waves over variable topography","authors":"R. Lteif, Samer Israwi","doi":"10.3233/ASY-171440","DOIUrl":null,"url":null,"abstract":"The Green–Naghdi type model in the Camassa–Holm regime derived in [Comm. Pure Appl. Anal. 14(6) (2015) 2203– 2230], describe the propagation of medium amplitude internal waves over medium amplitude topography variations. It is fully justified in the sense that it is well-posed, consistent with the full Euler system and converges to the latter with corresponding initial data. In this paper, we generalize this result by constructing a fully justified coupled asymptotic model in a more complex physical case of variable topography. More precisely, we are interested in specific bottoms wavelength of characteristic order λb = λ/α where λ is a characteristic horizontal length (wave-length of the interface). We assume a slowly varying topography with large amplitude (βα = O(√μ), where β characterizes the shape of the bottom). In addition, our system permits the full justification of any lower order, well-posed and consistent model. We apply the procedure to scalar models driven by simple unidirectional equations in the Camassa–Holm and long wave regimes and under some restrictions on the topography variations. We also show that wave breaking of solutions to such equations occurs in the Camassa–Holm regime with slow topography variations and for a specific set of parameters.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"487 1","pages":"61-98"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-171440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Green–Naghdi type model in the Camassa–Holm regime derived in [Comm. Pure Appl. Anal. 14(6) (2015) 2203– 2230], describe the propagation of medium amplitude internal waves over medium amplitude topography variations. It is fully justified in the sense that it is well-posed, consistent with the full Euler system and converges to the latter with corresponding initial data. In this paper, we generalize this result by constructing a fully justified coupled asymptotic model in a more complex physical case of variable topography. More precisely, we are interested in specific bottoms wavelength of characteristic order λb = λ/α where λ is a characteristic horizontal length (wave-length of the interface). We assume a slowly varying topography with large amplitude (βα = O(√μ), where β characterizes the shape of the bottom). In addition, our system permits the full justification of any lower order, well-posed and consistent model. We apply the procedure to scalar models driven by simple unidirectional equations in the Camassa–Holm and long wave regimes and under some restrictions on the topography variations. We also show that wave breaking of solutions to such equations occurs in the Camassa–Holm regime with slow topography variations and for a specific set of parameters.
变地形上内波的耦合和标量渐近模型
Camassa-Holm状态下的Green-Naghdi型模型[j]。文献[a] . 14(6)(2015) 2203 - 2230],描述了中振幅内波在中振幅地形变化上的传播。它是完全合理的,因为它是适定的,与完整的欧拉系统一致,并收敛于具有相应初始数据的欧拉系统。在本文中,我们通过构造一个更复杂的变地形物理情况下的完全证明的耦合渐近模型来推广这一结果。更准确地说,我们感兴趣的是特征阶为λb = λ/α的特定底波长,其中λ是特征水平长度(界面波长)。我们假设地形变化缓慢,振幅很大(βα = O(√μ),其中β表示底部形状)。此外,我们的系统允许对任何低阶、适定的和一致的模型进行充分论证。我们将这一过程应用于Camassa-Holm和长波域中由简单单向方程驱动的标量模型,并在地形变化的某些限制下。我们还表明,对于特定的一组参数,这些方程的解的破波发生在地形变化缓慢的Camassa-Holm区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信