Effect of hydraulic fracture deformation hysteresis on CO_2 huff-n-puff performance in shale gas reservoirs

IF 3.3 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Xia Yan, Piyang Liu, Zhao-qin Huang, Hai Sun, Kai Zhang, Jun-feng Wang, Jun Yao
{"title":"Effect of hydraulic fracture deformation hysteresis on CO_2 huff-n-puff performance in shale gas reservoirs","authors":"Xia Yan, Piyang Liu, Zhao-qin Huang, Hai Sun, Kai Zhang, Jun-feng Wang, Jun Yao","doi":"10.1631/jzus.A2200142","DOIUrl":null,"url":null,"abstract":"目的 在页岩气藏CO_2吞吐过程中, 水力裂缝处于循环载荷作用下时, 极易发生不可逆变形(变形滞后), 影响吞吐效果。本文旨在建立考虑水力裂缝变形滞后的页岩气藏CO_2吞吐流固耦合模型, 形成相应的高效求解方法, 并开展流固耦合数值模拟研究, 以揭示变形滞后对CO_2吞吐的影响规律。 创新点 1. 建立考虑水力裂缝变形滞后、复杂裂缝系统和特殊流动机理的页岩气藏多组分流固耦合模型, 并形成相应的三维高效数值模拟技术; 2. 揭示水力裂缝变形滞后对页岩气藏CO_2吞吐的影响规律。 方法 1. 建立考虑水力裂缝变形滞后、复杂裂缝系统和特殊流动机理的页岩气藏多组分流固耦合模型; 2. 基于结构化网格构造高效稳定的多组分流固耦合模型数值求解算法; 3. 通过流固耦合数值模拟, 揭示水力裂缝变形滞后对页岩气藏CO_2吞吐的影响规律。 结论 1. 水力裂缝变形滞后会阻碍 CO_2注入期间裂缝渗透率的恢复, 对CO_2吞吐有负面影响; 2. 较低的初始水力裂缝导流能力和生产压力、较晚的吞吐启动时间、较高的注入压力和较多的循环次数均会增强变形滞后的负面影响; 3. CO_2吞吐效果与初始水力裂缝导流能力、吞吐启动时间、注入压力和循环次数呈正相关, 与生产压力呈负相关。 As a promising enhanced gas recovery technique, CO_2 huff-n-puff has attracted great attention recently. However, hydraulic fracture deformation hysteresis is rarely considered, and its effect on CO_2 huff-n-puff performance is not well understood. In this study, we present a fully coupled multi-component flow and geomechanics model for simulating CO_2 huff-n-puff in shale gas reservoirs considering hydraulic fracture deformation hysteresis. Specifically, a shale gas reservoir after hydraulic fracturing is modeled using an efficient hybrid model incorporating an embedded discrete fracture model (EDFM), multiple porosity model, and single porosity model. In flow equations, Fick’s law, extended Langmuir isotherms, and the Peng-Robinson equation of state are used to describe the molecular diffusion, multi-component adsorption, and gas properties, respectively. In relation to geomechanics, a path-dependent constitutive law is applied for the hydraulic fracture deformation hysteresis. The finite volume method (FVM) and the stabilized extended finite element method (XFEM) are applied to discretize the flow and geomechanics equations, respectively. We then solve the coupled model using the fixed-stress split iterative method. Finally, we verify the presented method using several numerical examples, and apply it to investigate the effect of hydraulic fracture deformation hysteresis on CO_2 huff-n-puff performance in a 3D shale gas reservoir. Numerical results show that hydraulic fracture deformation hysteresis has some negative effects on CO_2 huff-n-puff performance. The effects are sensitive to the initial conductivity of hydraulic fracture, production pressure, starting time of huff-n-puff, injection pressure, and huff-n-puff cycle number.","PeriodicalId":17508,"journal":{"name":"Journal of Zhejiang University-SCIENCE A","volume":"22 1","pages":"37-55"},"PeriodicalIF":3.3000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-SCIENCE A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/jzus.A2200142","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

目的 在页岩气藏CO_2吞吐过程中, 水力裂缝处于循环载荷作用下时, 极易发生不可逆变形(变形滞后), 影响吞吐效果。本文旨在建立考虑水力裂缝变形滞后的页岩气藏CO_2吞吐流固耦合模型, 形成相应的高效求解方法, 并开展流固耦合数值模拟研究, 以揭示变形滞后对CO_2吞吐的影响规律。 创新点 1. 建立考虑水力裂缝变形滞后、复杂裂缝系统和特殊流动机理的页岩气藏多组分流固耦合模型, 并形成相应的三维高效数值模拟技术; 2. 揭示水力裂缝变形滞后对页岩气藏CO_2吞吐的影响规律。 方法 1. 建立考虑水力裂缝变形滞后、复杂裂缝系统和特殊流动机理的页岩气藏多组分流固耦合模型; 2. 基于结构化网格构造高效稳定的多组分流固耦合模型数值求解算法; 3. 通过流固耦合数值模拟, 揭示水力裂缝变形滞后对页岩气藏CO_2吞吐的影响规律。 结论 1. 水力裂缝变形滞后会阻碍 CO_2注入期间裂缝渗透率的恢复, 对CO_2吞吐有负面影响; 2. 较低的初始水力裂缝导流能力和生产压力、较晚的吞吐启动时间、较高的注入压力和较多的循环次数均会增强变形滞后的负面影响; 3. CO_2吞吐效果与初始水力裂缝导流能力、吞吐启动时间、注入压力和循环次数呈正相关, 与生产压力呈负相关。 As a promising enhanced gas recovery technique, CO_2 huff-n-puff has attracted great attention recently. However, hydraulic fracture deformation hysteresis is rarely considered, and its effect on CO_2 huff-n-puff performance is not well understood. In this study, we present a fully coupled multi-component flow and geomechanics model for simulating CO_2 huff-n-puff in shale gas reservoirs considering hydraulic fracture deformation hysteresis. Specifically, a shale gas reservoir after hydraulic fracturing is modeled using an efficient hybrid model incorporating an embedded discrete fracture model (EDFM), multiple porosity model, and single porosity model. In flow equations, Fick’s law, extended Langmuir isotherms, and the Peng-Robinson equation of state are used to describe the molecular diffusion, multi-component adsorption, and gas properties, respectively. In relation to geomechanics, a path-dependent constitutive law is applied for the hydraulic fracture deformation hysteresis. The finite volume method (FVM) and the stabilized extended finite element method (XFEM) are applied to discretize the flow and geomechanics equations, respectively. We then solve the coupled model using the fixed-stress split iterative method. Finally, we verify the presented method using several numerical examples, and apply it to investigate the effect of hydraulic fracture deformation hysteresis on CO_2 huff-n-puff performance in a 3D shale gas reservoir. Numerical results show that hydraulic fracture deformation hysteresis has some negative effects on CO_2 huff-n-puff performance. The effects are sensitive to the initial conductivity of hydraulic fracture, production pressure, starting time of huff-n-puff, injection pressure, and huff-n-puff cycle number.
水力裂缝变形滞后对页岩气藏CO_2吞吐性能的影响
目的 在页岩气藏CO_2吞吐过程中, 水力裂缝处于循环载荷作用下时, 极易发生不可逆变形(变形滞后), 影响吞吐效果。本文旨在建立考虑水力裂缝变形滞后的页岩气藏CO_2吞吐流固耦合模型, 形成相应的高效求解方法, 并开展流固耦合数值模拟研究, 以揭示变形滞后对CO_2吞吐的影响规律。 创新点 1. 建立考虑水力裂缝变形滞后、复杂裂缝系统和特殊流动机理的页岩气藏多组分流固耦合模型, 并形成相应的三维高效数值模拟技术; 2. 揭示水力裂缝变形滞后对页岩气藏CO_2吞吐的影响规律。 方法 1. 建立考虑水力裂缝变形滞后、复杂裂缝系统和特殊流动机理的页岩气藏多组分流固耦合模型; 2. 基于结构化网格构造高效稳定的多组分流固耦合模型数值求解算法; 3. 通过流固耦合数值模拟, 揭示水力裂缝变形滞后对页岩气藏CO_2吞吐的影响规律。 结论 1. 水力裂缝变形滞后会阻碍 CO_2注入期间裂缝渗透率的恢复, 对CO_2吞吐有负面影响; 2. 较低的初始水力裂缝导流能力和生产压力、较晚的吞吐启动时间、较高的注入压力和较多的循环次数均会增强变形滞后的负面影响; 3. CO_2吞吐效果与初始水力裂缝导流能力、吞吐启动时间、注入压力和循环次数呈正相关, 与生产压力呈负相关。 As a promising enhanced gas recovery technique, CO_2 huff-n-puff has attracted great attention recently. However, hydraulic fracture deformation hysteresis is rarely considered, and its effect on CO_2 huff-n-puff performance is not well understood. In this study, we present a fully coupled multi-component flow and geomechanics model for simulating CO_2 huff-n-puff in shale gas reservoirs considering hydraulic fracture deformation hysteresis. Specifically, a shale gas reservoir after hydraulic fracturing is modeled using an efficient hybrid model incorporating an embedded discrete fracture model (EDFM), multiple porosity model, and single porosity model. In flow equations, Fick’s law, extended Langmuir isotherms, and the Peng-Robinson equation of state are used to describe the molecular diffusion, multi-component adsorption, and gas properties, respectively. In relation to geomechanics, a path-dependent constitutive law is applied for the hydraulic fracture deformation hysteresis. The finite volume method (FVM) and the stabilized extended finite element method (XFEM) are applied to discretize the flow and geomechanics equations, respectively. We then solve the coupled model using the fixed-stress split iterative method. Finally, we verify the presented method using several numerical examples, and apply it to investigate the effect of hydraulic fracture deformation hysteresis on CO_2 huff-n-puff performance in a 3D shale gas reservoir. Numerical results show that hydraulic fracture deformation hysteresis has some negative effects on CO_2 huff-n-puff performance. The effects are sensitive to the initial conductivity of hydraulic fracture, production pressure, starting time of huff-n-puff, injection pressure, and huff-n-puff cycle number.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Zhejiang University-SCIENCE A
Journal of Zhejiang University-SCIENCE A 工程技术-工程:综合
CiteScore
5.60
自引率
12.50%
发文量
2964
审稿时长
2.9 months
期刊介绍: Journal of Zhejiang University SCIENCE A covers research in Applied Physics, Mechanical and Civil Engineering, Environmental Science and Energy, Materials Science and Chemical Engineering, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信