A Remark on Nefness of Divisors on Surfaces of General Type

Pub Date : 2022-11-10 DOI:10.1556/012.2022.01532
Debojyoti Bhattacharya, Joyentanuj Das
{"title":"A Remark on Nefness of Divisors on Surfaces of General Type","authors":"Debojyoti Bhattacharya, Joyentanuj Das","doi":"10.1556/012.2022.01532","DOIUrl":null,"url":null,"abstract":"Let X be an irreducible complex projective variety of dimension n ≥ 1. Let D be a Cartier divisor on X such that Hi(X, OX (mD)) = 0 for m > 0 and for all i > 0, then it is not true in general that D is a nef divisor (cf. [4]). Also, in general, effective divisors on smooth surfaces are not necessarily nef (they are nef provided they are semiample). In this article, we show that, if X is a smooth surface of general type and C is a smooth hyperplane section of it, then for any non-zero effective divisor D on X satisfying H1(X, OX (mD)) = 0 for all m > C.KX, D is a nef divisor.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2022.01532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be an irreducible complex projective variety of dimension n ≥ 1. Let D be a Cartier divisor on X such that Hi(X, OX (mD)) = 0 for m > 0 and for all i > 0, then it is not true in general that D is a nef divisor (cf. [4]). Also, in general, effective divisors on smooth surfaces are not necessarily nef (they are nef provided they are semiample). In this article, we show that, if X is a smooth surface of general type and C is a smooth hyperplane section of it, then for any non-zero effective divisor D on X satisfying H1(X, OX (mD)) = 0 for all m > C.KX, D is a nef divisor.
分享
查看原文
关于一般型曲面上除数的内洁性的一个注解
设X为维数n≥1的不可约复射影变数。设D是X上的一个Cartier除数,使得Hi(X, OX (mD))在m > 0且对于所有i > 0时均为0,则D一般不成立为nef除数(参见[4])。此外,一般来说,光滑表面上的有效除数不一定是净的(只要它们是半样本的,它们是净的)。在本文中,我们证明了,如果X是一般类型的光滑曲面,C是它的光滑超平面截面,那么对于X上的任意非零有效因子D满足H1(X, OX (mD)) = 0,对于所有m > C. kx, D是一个净因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信