{"title":"A Remark on Nefness of Divisors on Surfaces of General Type","authors":"Debojyoti Bhattacharya, Joyentanuj Das","doi":"10.1556/012.2022.01532","DOIUrl":null,"url":null,"abstract":"Let X be an irreducible complex projective variety of dimension n ≥ 1. Let D be a Cartier divisor on X such that Hi(X, OX (mD)) = 0 for m > 0 and for all i > 0, then it is not true in general that D is a nef divisor (cf. [4]). Also, in general, effective divisors on smooth surfaces are not necessarily nef (they are nef provided they are semiample). In this article, we show that, if X is a smooth surface of general type and C is a smooth hyperplane section of it, then for any non-zero effective divisor D on X satisfying H1(X, OX (mD)) = 0 for all m > C.KX, D is a nef divisor.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"28 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2022.01532","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let X be an irreducible complex projective variety of dimension n ≥ 1. Let D be a Cartier divisor on X such that Hi(X, OX (mD)) = 0 for m > 0 and for all i > 0, then it is not true in general that D is a nef divisor (cf. [4]). Also, in general, effective divisors on smooth surfaces are not necessarily nef (they are nef provided they are semiample). In this article, we show that, if X is a smooth surface of general type and C is a smooth hyperplane section of it, then for any non-zero effective divisor D on X satisfying H1(X, OX (mD)) = 0 for all m > C.KX, D is a nef divisor.
期刊介绍:
The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.