Combining models and guided empirical search to optimize for multiple levels of the memory hierarchy

Chun Chen, Jacqueline Chame, Mary W. Hall
{"title":"Combining models and guided empirical search to optimize for multiple levels of the memory hierarchy","authors":"Chun Chen, Jacqueline Chame, Mary W. Hall","doi":"10.1109/CGO.2005.10","DOIUrl":null,"url":null,"abstract":"This paper describes an algorithm for simultaneously optimizing across multiple levels of the memory hierarchy for dense-matrix computations. Our approach combines compiler models and heuristics with guided empirical search to take advantage of their complementary strengths. The models and heuristics limit the search to a small number of candidate implementations, and the empirical results provide the most accurate information to the compiler to select among candidates and tune optimization parameter values. We have developed an initial implementation and applied this approach to two case studies, matrix multiply and Jacobi relaxation. For matrix multiply, our results on two architectures, SGI R10000 and Sun UltraSparc IIe, outperform the native compiler, and either outperform or achieve comparable performance as the ATLAS self-tuning library and the hand-tuned vendor BLAS library. Jacobi results also substantially outperform the native compilers.","PeriodicalId":92120,"journal":{"name":"Proceedings of the ... CGO : International Symposium on Code Generation and Optimization. International Symposium on Code Generation and Optimization","volume":"206 1","pages":"111-122"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... CGO : International Symposium on Code Generation and Optimization. International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO.2005.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

Abstract

This paper describes an algorithm for simultaneously optimizing across multiple levels of the memory hierarchy for dense-matrix computations. Our approach combines compiler models and heuristics with guided empirical search to take advantage of their complementary strengths. The models and heuristics limit the search to a small number of candidate implementations, and the empirical results provide the most accurate information to the compiler to select among candidates and tune optimization parameter values. We have developed an initial implementation and applied this approach to two case studies, matrix multiply and Jacobi relaxation. For matrix multiply, our results on two architectures, SGI R10000 and Sun UltraSparc IIe, outperform the native compiler, and either outperform or achieve comparable performance as the ATLAS self-tuning library and the hand-tuned vendor BLAS library. Jacobi results also substantially outperform the native compilers.
结合模型和引导经验搜索,对多级记忆结构进行优化
本文描述了一种用于密集矩阵计算的跨多层内存结构同时优化的算法。我们的方法结合了编译器模型和启发式与指导经验搜索,以利用他们的互补优势。模型和启发式方法将搜索限制在少数候选实现中,经验结果为编译器提供最准确的信息,以便在候选实现中进行选择并调整优化参数值。我们已经开发了一个初步的实现,并将这种方法应用于两个案例研究,矩阵乘法和雅可比松弛。对于矩阵乘法,我们在两个体系结构(SGI R10000和Sun UltraSparc IIe)上的结果优于本机编译器,并且优于ATLAS自调优库和手动调优供应商BLAS库,或者达到与之相当的性能。Jacobi结果的性能也大大优于本机编译器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信