PySyn: A Rapid Synthesis for Mixed-Signal Machine Learning Classification

Farid Kenarangi, Inna Partin-Vaisband
{"title":"PySyn: A Rapid Synthesis for Mixed-Signal Machine Learning Classification","authors":"Farid Kenarangi, Inna Partin-Vaisband","doi":"10.1109/MWSCAS47672.2021.9531745","DOIUrl":null,"url":null,"abstract":"Mixed-signal integrated circuits (ICs) for machine learning (ML) have been demonstrated as a powerful tool for efficient and accurate classification of large volumes of complex data. Despite the growing interest in ML ICs, the design process of mixed-signal ML classifiers is dominated by ad hoc approaches. In this paper, a rapid synthesizer is developed in Python (PySyn) for designing compact power-efficient high-performance ML classifiers. Circuit-level ML library is designed and leveraged within the flow. System-level tradeoffs are generated with PySyn and utilized to iteratively adjust the ML performance. PySyn is demonstrated with a state-of-the-art classifier, generating optimized netlists under input constraints.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"15 1","pages":"712-717"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed-signal integrated circuits (ICs) for machine learning (ML) have been demonstrated as a powerful tool for efficient and accurate classification of large volumes of complex data. Despite the growing interest in ML ICs, the design process of mixed-signal ML classifiers is dominated by ad hoc approaches. In this paper, a rapid synthesizer is developed in Python (PySyn) for designing compact power-efficient high-performance ML classifiers. Circuit-level ML library is designed and leveraged within the flow. System-level tradeoffs are generated with PySyn and utilized to iteratively adjust the ML performance. PySyn is demonstrated with a state-of-the-art classifier, generating optimized netlists under input constraints.
PySyn:混合信号机器学习分类的快速综合
用于机器学习(ML)的混合信号集成电路(ic)已被证明是对大量复杂数据进行高效准确分类的强大工具。尽管人们对机器学习集成电路的兴趣日益浓厚,但混合信号机器学习分类器的设计过程仍由特殊方法主导。本文利用Python开发了一个快速合成器(PySyn),用于设计紧凑高效的高性能ML分类器。电路级ML库被设计和利用在流程中。使用PySyn生成系统级权衡,并用于迭代地调整机器学习性能。PySyn使用最先进的分类器进行演示,在输入约束下生成优化的网络列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信