Bifurcations and Exact Traveling Wave Solutions of the Generalized Serre-Green-Naghdi System with Weak Coriolis Effect and Surface Tension

Maoan Han, Guanrong Chen, Jibin Li
{"title":"Bifurcations and Exact Traveling Wave Solutions of the Generalized Serre-Green-Naghdi System with Weak Coriolis Effect and Surface Tension","authors":"Maoan Han, Guanrong Chen, Jibin Li","doi":"10.1142/s0218127423501018","DOIUrl":null,"url":null,"abstract":"For the generalized Serre–Green–Naghdi system with weak Coriolis effect and surface tension, by using the dynamical system methods and singular traveling wave theory developed by Li and Chen [2007] to its associate traveling wave system, under different parameter conditions, all possible bounded solutions (solitary wave solutions, periodic wave solutions, peakons, periodic peakons as well as compacton solution families) are obtained. Exact explicit parametric representations are given.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"39 1","pages":"2350101:1-2350101:15"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423501018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the generalized Serre–Green–Naghdi system with weak Coriolis effect and surface tension, by using the dynamical system methods and singular traveling wave theory developed by Li and Chen [2007] to its associate traveling wave system, under different parameter conditions, all possible bounded solutions (solitary wave solutions, periodic wave solutions, peakons, periodic peakons as well as compacton solution families) are obtained. Exact explicit parametric representations are given.
具有弱科里奥利效应和表面张力的广义Serre-Green-Naghdi系统的分岔和精确行波解
对于具有弱科里奥利效应和表面张力的广义Serre-Green-Naghdi系统,利用Li和Chen[2007]对其关联行波系统的动力系统方法和奇异行波理论,在不同参数条件下,得到了所有可能的有界解(孤波解、周期波解、峰、周期峰以及紧实解族)。给出了精确的显式参数表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信