New Advances in Surface Data Logging Technologies for Comprehensive Real-Time Petrophysical Evaluation to Optimize Logging Programs in a Mature Field; A Case History, Onshore, Abu Dhabi
S. Al Arfi, M. Sarhan, Olawole Adene, M. Rizky, A. Baruno, Ikram Ullah, Roswall Enrique, Ali Mubarak Al Braiki, M. Shaker, W. Fares, Emad Diab, Hossam Elfaramawy
{"title":"New Advances in Surface Data Logging Technologies for Comprehensive Real-Time Petrophysical Evaluation to Optimize Logging Programs in a Mature Field; A Case History, Onshore, Abu Dhabi","authors":"S. Al Arfi, M. Sarhan, Olawole Adene, M. Rizky, A. Baruno, Ikram Ullah, Roswall Enrique, Ali Mubarak Al Braiki, M. Shaker, W. Fares, Emad Diab, Hossam Elfaramawy","doi":"10.2118/207247-ms","DOIUrl":null,"url":null,"abstract":"\n The challenges of drilling new wells are increasingly associated with minimizing HSE risks, that relate to chemical radioactive sources in the Bottom Hole Assembly for formation evaluation. Drilling risks such as differential sticking, also necessitates investigation of alternative petrophysical data gathering methodologies that can fulfil these requirements. Surface Data Logging presents a viable alternative in mature fields, satisfying petrophysical data gathering and interpretation in real-time as well, as traditional geological applications and offset well correlations in a way, to optimize well construction costs.\n During the planning phase, a fully integrated approach was adopted including advanced cutting and advanced gas analysis to be deployed, in this case study, well together with experienced well site personnel. A comprehensive pre-well study was conducted reviewing all offset nearby wells data. The workflow included provision of full real-time advanced cuttings and gas analysis for formation evaluation and reservoir fluid composition, lithology description, and addressing effective hole cleaning concerns.\n The advanced Mud Logging services was run in parallel to the Logging While Drilling services for a few pilot wells, in order to correlate downhole tool parameters, with respect to data quality control, to identify the petrophysical character of the formation markers for benchmarking future data gathering requirements. In addition to the potential use of standalone fully integrated advanced Mud Logging to reduce risks and minimize field development costs.\n With the help of experienced wellsite geologist on location and real time advanced gas detection utilizing high resolution mass spectrometer and X-Ray fluorescence (XRF) and X-Ray Diffraction (XRD) data, geological boundaries and formations tops were accurately identified across the whole drilled interval. Modern and advanced interpretation techniques for the integrated analysis were proven to be effective in determining sweet spots of the reservoir, fluid type, and overall reservoir quality.\n Deployment of fully integrated mud logging solutions with new interpretation methodologies can be effective in providing a better understanding of reservoir geological and petrophysical characteristics in real-time, offering viable alternative for minimizing formation evaluation sensors in the BHA, particularly eliminating radioactive sources, while reducing overall developments costs, without sacrificing formation evaluation requirements.","PeriodicalId":10967,"journal":{"name":"Day 1 Mon, November 15, 2021","volume":"291 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207247-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The challenges of drilling new wells are increasingly associated with minimizing HSE risks, that relate to chemical radioactive sources in the Bottom Hole Assembly for formation evaluation. Drilling risks such as differential sticking, also necessitates investigation of alternative petrophysical data gathering methodologies that can fulfil these requirements. Surface Data Logging presents a viable alternative in mature fields, satisfying petrophysical data gathering and interpretation in real-time as well, as traditional geological applications and offset well correlations in a way, to optimize well construction costs.
During the planning phase, a fully integrated approach was adopted including advanced cutting and advanced gas analysis to be deployed, in this case study, well together with experienced well site personnel. A comprehensive pre-well study was conducted reviewing all offset nearby wells data. The workflow included provision of full real-time advanced cuttings and gas analysis for formation evaluation and reservoir fluid composition, lithology description, and addressing effective hole cleaning concerns.
The advanced Mud Logging services was run in parallel to the Logging While Drilling services for a few pilot wells, in order to correlate downhole tool parameters, with respect to data quality control, to identify the petrophysical character of the formation markers for benchmarking future data gathering requirements. In addition to the potential use of standalone fully integrated advanced Mud Logging to reduce risks and minimize field development costs.
With the help of experienced wellsite geologist on location and real time advanced gas detection utilizing high resolution mass spectrometer and X-Ray fluorescence (XRF) and X-Ray Diffraction (XRD) data, geological boundaries and formations tops were accurately identified across the whole drilled interval. Modern and advanced interpretation techniques for the integrated analysis were proven to be effective in determining sweet spots of the reservoir, fluid type, and overall reservoir quality.
Deployment of fully integrated mud logging solutions with new interpretation methodologies can be effective in providing a better understanding of reservoir geological and petrophysical characteristics in real-time, offering viable alternative for minimizing formation evaluation sensors in the BHA, particularly eliminating radioactive sources, while reducing overall developments costs, without sacrificing formation evaluation requirements.