Maximum Likelihood Estimation for Matrix Normal Models via Quiver Representations

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
H. Derksen, V. Makam
{"title":"Maximum Likelihood Estimation for Matrix Normal Models via Quiver Representations","authors":"H. Derksen, V. Makam","doi":"10.1137/20M1369348","DOIUrl":null,"url":null,"abstract":"In this paper, we study the log-likelihood function and Maximum Likelihood Estimate (MLE) for the matrix normal model for both real and complex models. We describe the exact number of samples needed to achieve (almost surely) three conditions, namely a bounded log-likelihood function, existence of MLEs, and uniqueness of MLEs. As a consequence, we observe that almost sure boundedness of log-likelihood function guarantees almost sure existence of an MLE, thereby proving a conjecture of Drton, Kuriki and Hoff. The main tools we use are from the theory of quiver representations, in particular, results of Kac, King and Schofield on canonical decomposition and stability.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20M1369348","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper, we study the log-likelihood function and Maximum Likelihood Estimate (MLE) for the matrix normal model for both real and complex models. We describe the exact number of samples needed to achieve (almost surely) three conditions, namely a bounded log-likelihood function, existence of MLEs, and uniqueness of MLEs. As a consequence, we observe that almost sure boundedness of log-likelihood function guarantees almost sure existence of an MLE, thereby proving a conjecture of Drton, Kuriki and Hoff. The main tools we use are from the theory of quiver representations, in particular, results of Kac, King and Schofield on canonical decomposition and stability.
基于颤振表示的矩阵正态模型的最大似然估计
本文研究了真实模型和复杂模型的矩阵正态模型的对数似然函数和最大似然估计(MLE)。我们描述了实现(几乎肯定)三个条件所需的确切样本数量,即有界对数似然函数、最大似然函数的存在性和最大似然函数的唯一性。因此,我们观察到对数似然函数的几乎肯定有界性保证了最大似然函数的几乎肯定存在,从而证明了Drton、Kuriki和Hoff的一个猜想。我们使用的主要工具来自颤抖表示理论,特别是Kac, King和Schofield关于正则分解和稳定性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信