The Routh Hurwitz Criteria for Studying The Stability and Bifurcation in Multispiral Chua Chaotic Attractor

Mendel Pub Date : 2023-06-30 DOI:10.13164/mendel.2023.1.071
Maika Belouerghi, T. Menacer, R. Lozi
{"title":"The Routh Hurwitz Criteria for Studying The Stability and Bifurcation in Multispiral Chua Chaotic Attractor","authors":"Maika Belouerghi, T. Menacer, R. Lozi","doi":"10.13164/mendel.2023.1.071","DOIUrl":null,"url":null,"abstract":"This article discusses the multispiral Chua Chaotic attractor’s hidden bifurcations that are generated by the sine function. The number of spirals (also known as a multiscroll attractor) that are controlled by the integer parameter c can be used to describe the basic shape of chaotic attractors. Since this parameter is an integer, increasing it by one does not allow the observation of bifurcations from n to n + 2 spirals. The method of hidden bifurcations, however, enables the observation of such bifurcations by adding a real parameter ε. Chaotic attractors with either an even or an odd number of spirals are visible along the marked paths of bifurcation. Moreover, this additional hidden parameter allows finding the bifurcation of the multispiral Chua attractor from a stable state to a chaotic state. Furthermore, the Routh-Hurwitz criteria are used to study the stability of the original equilibrium point of the Chua attractor.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2023.1.071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article discusses the multispiral Chua Chaotic attractor’s hidden bifurcations that are generated by the sine function. The number of spirals (also known as a multiscroll attractor) that are controlled by the integer parameter c can be used to describe the basic shape of chaotic attractors. Since this parameter is an integer, increasing it by one does not allow the observation of bifurcations from n to n + 2 spirals. The method of hidden bifurcations, however, enables the observation of such bifurcations by adding a real parameter ε. Chaotic attractors with either an even or an odd number of spirals are visible along the marked paths of bifurcation. Moreover, this additional hidden parameter allows finding the bifurcation of the multispiral Chua attractor from a stable state to a chaotic state. Furthermore, the Routh-Hurwitz criteria are used to study the stability of the original equilibrium point of the Chua attractor.
研究多螺旋Chua混沌吸引子稳定性和分岔的Routh Hurwitz准则
本文讨论了由正弦函数产生的多螺旋蔡混沌吸引子的隐分岔问题。由整数参数c控制的螺旋数(也称为多涡旋吸引子)可以用来描述混沌吸引子的基本形状。由于该参数是一个整数,因此将其增加1不能观察到从n到n + 2个螺旋的分岔。然而,隐藏分岔的方法可以通过添加实参数ε来观察这种分岔。具有偶数或奇数螺旋的混沌吸引子沿着分岔的标记路径可见。此外,这个附加的隐藏参数允许找到多螺旋蔡氏吸引子从稳定状态到混沌状态的分岔。此外,利用Routh-Hurwitz准则研究了Chua吸引子原平衡点的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mendel
Mendel Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信