Integral equation for low frequency scattering problem of perfect electric conductors in quasi-static regime

F. Vico, M. Ferrando-Bataller, A. Berenguer, D. Sánchez-Escuderos
{"title":"Integral equation for low frequency scattering problem of perfect electric conductors in quasi-static regime","authors":"F. Vico, M. Ferrando-Bataller, A. Berenguer, D. Sánchez-Escuderos","doi":"10.1109/APS.2014.6905420","DOIUrl":null,"url":null,"abstract":"In this paper we present a low frequency integral formulation for the scattering of perfect electric conducting objects. The formulation is a first order approximation for low frequency and is based on the fact that the vector and scalar potentials are decoupled at zero frequency. In this regime we find suitable boundary conditions for the vector potential and for the scalar potential. We test the accuracy of this approximation at low frequency. The geometry under test is the sphere and the exact reference solution used is the Mie series.","PeriodicalId":6663,"journal":{"name":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","volume":"126 1","pages":"2186-2187"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2014.6905420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a low frequency integral formulation for the scattering of perfect electric conducting objects. The formulation is a first order approximation for low frequency and is based on the fact that the vector and scalar potentials are decoupled at zero frequency. In this regime we find suitable boundary conditions for the vector potential and for the scalar potential. We test the accuracy of this approximation at low frequency. The geometry under test is the sphere and the exact reference solution used is the Mie series.
准静态状态下完美电导体低频散射问题的积分方程
本文给出了理想导电物体散射的低频积分公式。该公式是低频的一阶近似,基于矢量和标量势在零频率处解耦的事实。在这个域中,我们找到了向量势和标量势的合适边界条件。我们在低频测试了这种近似的准确性。被测试的几何是球体,使用的精确参考解是Mie级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信