Effectively infinite classes of numberings and computable families of reals

IF 0.3 Q4 MATHEMATICS, APPLIED
M. Faizrahmanov, Zlata Shchedrikova
{"title":"Effectively infinite classes of numberings and computable families of reals","authors":"M. Faizrahmanov, Zlata Shchedrikova","doi":"10.3233/com-230461","DOIUrl":null,"url":null,"abstract":"We prove various sufficient conditions for the effective infinity of classes of computable numberings. Then we apply them to show that for every computable family of left-c.e. reals without the greatest element the class of its Friedberg computable numberings is effectively infinite. In particular, this result covers the families of all left-c.e. and all Martin-Löf random left-c.e. reals whose Friedberg computable numberings have been constructed by Broadhead and Kjos-Hanssen in their paper (In Mathematical Theory and Computational Practice, CiE 2009 (2009) 49–58 Springer). In addition, for every infinite computable family of left-c.e. reals we prove that the classes of all its computable, positive and minimal numberings are effectively infinite.","PeriodicalId":42452,"journal":{"name":"Computability-The Journal of the Association CiE","volume":"526 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computability-The Journal of the Association CiE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/com-230461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We prove various sufficient conditions for the effective infinity of classes of computable numberings. Then we apply them to show that for every computable family of left-c.e. reals without the greatest element the class of its Friedberg computable numberings is effectively infinite. In particular, this result covers the families of all left-c.e. and all Martin-Löf random left-c.e. reals whose Friedberg computable numberings have been constructed by Broadhead and Kjos-Hanssen in their paper (In Mathematical Theory and Computational Practice, CiE 2009 (2009) 49–58 Springer). In addition, for every infinite computable family of left-c.e. reals we prove that the classes of all its computable, positive and minimal numberings are effectively infinite.
实际上无限的数类和可计算的实数族
证明了一类可计算数的有效无穷的各种充分条件。然后应用它们证明了对于每一个可计算的左-c - e族。没有最大元的实数,它的弗里德伯格可计算数的类实际上是无限的。特别地,这个结果涵盖了所有左-c - e的科。和所有Martin-Löf随机左-c。在Broadhead和Kjos-Hanssen的论文(in Mathematical Theory and Computational Practice, CiE 2009 (2009) 49-58 Springer)中,他们构建了弗里德伯格可计算数。此外,对于每一个无限可计算的左-c族。实数证明了其所有可计算数、正数和极小数的类是有效无穷的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信