Cryptanalysis of a hash function, and the modular subset sum problem

IF 0.1 Q4 MATHEMATICS
C. Monico
{"title":"Cryptanalysis of a hash function, and the modular subset sum problem","authors":"C. Monico","doi":"10.1515/gcc-2019-2001","DOIUrl":null,"url":null,"abstract":"Abstract Recently, Shpilrain and Sosnovski proposed a hash function based on composition of affine maps. In this paper, we show that this hash function with its proposed parameters is not weak collision resistant, for plaintexts of size at least 1.9MB (about 2 24 {2^{24}} bits). Our approach is to reduce the preimage problem to a (very) high density instance of the Random Modular Subset Sum Problem, for which we give an algorithm capable of solving instances of the resulting size. Specifically, given plaintexts of about 1.9MB, we were able to produce other plaintexts of the same size with the same hash value in about 13 hours each, on average.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"17 1","pages":"17 - 23"},"PeriodicalIF":0.1000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2019-2001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Recently, Shpilrain and Sosnovski proposed a hash function based on composition of affine maps. In this paper, we show that this hash function with its proposed parameters is not weak collision resistant, for plaintexts of size at least 1.9MB (about 2 24 {2^{24}} bits). Our approach is to reduce the preimage problem to a (very) high density instance of the Random Modular Subset Sum Problem, for which we give an algorithm capable of solving instances of the resulting size. Specifically, given plaintexts of about 1.9MB, we were able to produce other plaintexts of the same size with the same hash value in about 13 hours each, on average.
哈希函数的密码分析,以及模子集和问题
最近,Shpilrain和Sosnovski提出了一种基于仿射映射复合的哈希函数。在本文中,我们证明了该哈希函数及其提出的参数对于大小至少为1.9MB(约224{2^{24}}位)的明文不是弱抗碰撞的。我们的方法是将预像问题简化为随机模子集和问题的一个(非常)高密度实例,为此我们给出了一个能够求解结果大小实例的算法。具体来说,给定大约1.9MB的明文,我们能够平均在大约13小时内生成具有相同散列值的相同大小的其他明文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信