{"title":"Nonlinear dynamics of the predator – prey system in a heterogeneous habitat and scenarios of local interaction of species","authors":"V. Tsybulin, T. D. Ha, P. Zelenchuk","doi":"10.18500/0869-6632-2021-29-5-751-764","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to study the influence of various local models in the equations of diffusion–advection– reaction on the spatial processes of coexistence of predators and prey under conditions of a nonuniform distribution of the carrying capacity. We consider a system of nonlinear parabolic equations to describe diffusion, taxis, and local interaction of a predator and prey in a one-dimensional habitat. Methods. We carried out the study of the system using the dynamical systems approach and a computational experiment based on the method of lines and a scheme of staggered grids. Results. The behavior of the predator – prey system has been studied for various scenarios of local interaction, taking into account the hyperbolic law of prey growth and the Holling effect with nonuniform carrying capacity. We have established paradoxical scenarios of interaction between prey and predator for several modifications of the trophic function. Stationary and nonstationary solutions are analyzed considering diffusion and directed migration of species. Conclusion. The trophic function that considers the heterogeneity of the resource is proposed, which does not lead to paradoxical dynamics.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"202 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2021-29-5-751-764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The purpose of this work is to study the influence of various local models in the equations of diffusion–advection– reaction on the spatial processes of coexistence of predators and prey under conditions of a nonuniform distribution of the carrying capacity. We consider a system of nonlinear parabolic equations to describe diffusion, taxis, and local interaction of a predator and prey in a one-dimensional habitat. Methods. We carried out the study of the system using the dynamical systems approach and a computational experiment based on the method of lines and a scheme of staggered grids. Results. The behavior of the predator – prey system has been studied for various scenarios of local interaction, taking into account the hyperbolic law of prey growth and the Holling effect with nonuniform carrying capacity. We have established paradoxical scenarios of interaction between prey and predator for several modifications of the trophic function. Stationary and nonstationary solutions are analyzed considering diffusion and directed migration of species. Conclusion. The trophic function that considers the heterogeneity of the resource is proposed, which does not lead to paradoxical dynamics.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.