Determinants vs. Algebraic Branching Programs

Abhranil Chatterjee, Mrinal Kumar, Ben lee Volk
{"title":"Determinants vs. Algebraic Branching Programs","authors":"Abhranil Chatterjee, Mrinal Kumar, Ben lee Volk","doi":"10.48550/arXiv.2308.04599","DOIUrl":null,"url":null,"abstract":"We show that for every homogeneous polynomial of degree $d$, if it has determinantal complexity at most $s$, then it can be computed by a homogeneous algebraic branching program (ABP) of size at most $O(d^5s)$. Moreover, we show that for $\\textit{most}$ homogeneous polynomials, the width of the resulting homogeneous ABP is just $s-1$ and the size is at most $O(ds)$. Thus, for constant degree homogeneous polynomials, their determinantal complexity and ABP complexity are within a constant factor of each other and hence, a super-linear lower bound for ABPs for any constant degree polynomial implies a super-linear lower bound on determinantal complexity; this relates two open problems of great interest in algebraic complexity. As of now, super-linear lower bounds for ABPs are known only for polynomials of growing degree, and for determinantal complexity the best lower bounds are larger than the number of variables only by a constant factor. While determinantal complexity and ABP complexity are classically known to be polynomially equivalent, the standard transformation from the former to the latter incurs a polynomial blow up in size in the process, and thus, it was unclear if a super-linear lower bound for ABPs implies a super-linear lower bound on determinantal complexity. In particular, a size preserving transformation from determinantal complexity to ABPs does not appear to have been known prior to this work, even for constant degree polynomials.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"238 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.04599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that for every homogeneous polynomial of degree $d$, if it has determinantal complexity at most $s$, then it can be computed by a homogeneous algebraic branching program (ABP) of size at most $O(d^5s)$. Moreover, we show that for $\textit{most}$ homogeneous polynomials, the width of the resulting homogeneous ABP is just $s-1$ and the size is at most $O(ds)$. Thus, for constant degree homogeneous polynomials, their determinantal complexity and ABP complexity are within a constant factor of each other and hence, a super-linear lower bound for ABPs for any constant degree polynomial implies a super-linear lower bound on determinantal complexity; this relates two open problems of great interest in algebraic complexity. As of now, super-linear lower bounds for ABPs are known only for polynomials of growing degree, and for determinantal complexity the best lower bounds are larger than the number of variables only by a constant factor. While determinantal complexity and ABP complexity are classically known to be polynomially equivalent, the standard transformation from the former to the latter incurs a polynomial blow up in size in the process, and thus, it was unclear if a super-linear lower bound for ABPs implies a super-linear lower bound on determinantal complexity. In particular, a size preserving transformation from determinantal complexity to ABPs does not appear to have been known prior to this work, even for constant degree polynomials.
行列式与代数分支程序
我们证明了对于每一个阶次为$d$的齐次多项式,如果它的确定性复杂度不超过$s$,那么它可以用一个最不超过$O(d^5s)$的齐次代数分支程序(ABP)来计算。此外,我们表明,对于$\textit{most}$齐次多项式,得到的齐次ABP的宽度仅为$s-1$,大小最多为$O(ds)$。因此,对于常次齐次多项式,其行列式复杂度和ABP复杂度都在一个常数因子内,因此,任意常次多项式的ABP的超线性下界意味着行列式复杂度的超线性下界;这涉及到代数复杂性中两个非常有趣的开放问题。到目前为止,abp的超线性下界只对级数增长的多项式已知,而对于行列式复杂度,最佳下界只比变量数大一个常数因子。虽然行列式复杂度和ABP复杂度在经典上被认为是多项式等价的,但从前者到后者的标准转换在过程中会导致多项式大小的膨胀,因此,不清楚ABP的超线性下界是否意味着行列式复杂度的超线性下界。特别是,在这项工作之前,从确定性复杂性到abp的大小保持转换似乎并不为人所知,即使对于常次多项式也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信