Synthesis of Images by Two-Stage Generative Adversarial Networks

Qiang Huang, P. Jackson, Mark D. Plumbley, Wenwu Wang
{"title":"Synthesis of Images by Two-Stage Generative Adversarial Networks","authors":"Qiang Huang, P. Jackson, Mark D. Plumbley, Wenwu Wang","doi":"10.1109/ICASSP.2018.8461984","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a divide-and-conquer approach using two generative adversarial networks (GANs) to explore how a machine can draw colorful pictures (bird) using a small amount of training data. In our work, we simulate the procedure of an artist drawing a picture, where one begins with drawing objects' contours and edges and then paints them different colors. We adopt two GAN models to process basic visual features including shape, texture and color. We use the first GAN model to generate object shape, and then paint the black and white image based on the knowledge learned using the second GAN model. We run our experiments on 600 color images. The experimental results show that the use of our approach can generate good quality synthetic images, comparable to real ones.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"9 1","pages":"1593-1597"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a divide-and-conquer approach using two generative adversarial networks (GANs) to explore how a machine can draw colorful pictures (bird) using a small amount of training data. In our work, we simulate the procedure of an artist drawing a picture, where one begins with drawing objects' contours and edges and then paints them different colors. We adopt two GAN models to process basic visual features including shape, texture and color. We use the first GAN model to generate object shape, and then paint the black and white image based on the knowledge learned using the second GAN model. We run our experiments on 600 color images. The experimental results show that the use of our approach can generate good quality synthetic images, comparable to real ones.
基于两阶段生成对抗网络的图像合成
在本文中,我们提出了一种分而治之的方法,使用两个生成对抗网络(gan)来探索机器如何使用少量训练数据绘制彩色图片(鸟)。在我们的工作中,我们模拟艺术家绘画的过程,首先画出物体的轮廓和边缘,然后涂上不同的颜色。我们采用两种GAN模型来处理基本的视觉特征,包括形状、纹理和颜色。我们使用第一个GAN模型生成物体形状,然后根据使用第二个GAN模型学习的知识绘制黑白图像。我们在600张彩色图像上进行实验。实验结果表明,使用我们的方法可以生成与真实图像相当的高质量合成图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信