An NN-based dynamic time-slice scheme for bandwidth allocation in ATM networks

Z. Fan, P. Mars
{"title":"An NN-based dynamic time-slice scheme for bandwidth allocation in ATM networks","authors":"Z. Fan, P. Mars","doi":"10.1109/ICICS.1997.647117","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a neural network (NN) approach for adaptive bandwidth allocation in ATM networks. This method is essentially based on the dynamic time-slice (DTS) scheme proposed by K. Sriram (1993) which guarantees a required bandwidth for each traffic class and/or virtual circuit (VC). Instead of using analytical static traffic tables to allocate bandwidth, we use NNs to adaptively estimate the effective bandwidths of different call types to reflect the time-varying nature of traffic conditions. Simulation results show that the neural estimation is more accurate and hence leads to higher resource utilization. The NN approach also provides faster response in reallocation of bandwidth to meet the stringent delay requirements.","PeriodicalId":71361,"journal":{"name":"信息通信技术","volume":"66 1","pages":"345-350 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息通信技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICICS.1997.647117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a neural network (NN) approach for adaptive bandwidth allocation in ATM networks. This method is essentially based on the dynamic time-slice (DTS) scheme proposed by K. Sriram (1993) which guarantees a required bandwidth for each traffic class and/or virtual circuit (VC). Instead of using analytical static traffic tables to allocate bandwidth, we use NNs to adaptively estimate the effective bandwidths of different call types to reflect the time-varying nature of traffic conditions. Simulation results show that the neural estimation is more accurate and hence leads to higher resource utilization. The NN approach also provides faster response in reallocation of bandwidth to meet the stringent delay requirements.
一种基于神经网络的ATM网络带宽分配动态时间片方案
本文提出了一种基于神经网络的ATM网络自适应带宽分配方法。该方法本质上是基于K. Sriram(1993)提出的动态时间片(DTS)方案,该方案保证了每个流量类和/或虚拟电路(VC)所需的带宽。我们使用神经网络来自适应估计不同呼叫类型的有效带宽,以反映流量条件的时变性质,而不是使用分析静态流量表来分配带宽。仿真结果表明,神经网络估计更准确,从而提高了资源利用率。神经网络方法在带宽重新分配方面也提供了更快的响应,以满足严格的延迟要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1369
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信