BiLuNet: A Multi-path Network for Semantic Segmentation on X-ray Images

V. Tran, Huei-Yung Lin, Hsiao-Wei Liu, Fang-Jie Jang, Chun-Han Tseng
{"title":"BiLuNet: A Multi-path Network for Semantic Segmentation on X-ray Images","authors":"V. Tran, Huei-Yung Lin, Hsiao-Wei Liu, Fang-Jie Jang, Chun-Han Tseng","doi":"10.1109/ICPR48806.2021.9412027","DOIUrl":null,"url":null,"abstract":"Semantic segmentation and shape detection of lumbar vertebrae, sacrum, and femoral heads from clinical X-ray images are important and challenging tasks. In this paper, we propose a new multi-path convolutional neural network, BiLuNet, for semantic segmentation on X-ray images. The network is capable of medical image segmentation with very limited training data. With the shape fitting of the bones, we can identify the location of the target regions very accurately for lumbar vertebra inspection. We collected our dataset and annotated by doctors for model training and performance evaluation. Compared to the state-of-the-art methods, the proposed technique provides better mIoUs and higher success rates with the same training data. The experimental results have demonstrated the feasibility of our network to perform semantic segmentation for lumbar vertebrae, sacrum, and femoral heads. Code is available at: https://github.com/LuanTran07/BiLUnet-Lumbar-Spine.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"34 1","pages":"10034-10041"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Semantic segmentation and shape detection of lumbar vertebrae, sacrum, and femoral heads from clinical X-ray images are important and challenging tasks. In this paper, we propose a new multi-path convolutional neural network, BiLuNet, for semantic segmentation on X-ray images. The network is capable of medical image segmentation with very limited training data. With the shape fitting of the bones, we can identify the location of the target regions very accurately for lumbar vertebra inspection. We collected our dataset and annotated by doctors for model training and performance evaluation. Compared to the state-of-the-art methods, the proposed technique provides better mIoUs and higher success rates with the same training data. The experimental results have demonstrated the feasibility of our network to perform semantic segmentation for lumbar vertebrae, sacrum, and femoral heads. Code is available at: https://github.com/LuanTran07/BiLUnet-Lumbar-Spine.
BiLuNet:用于x射线图像语义分割的多路径网络
从临床x线图像中对腰椎、骶骨和股骨头进行语义分割和形状检测是一项重要而具有挑战性的任务。在本文中,我们提出了一种新的多路径卷积神经网络BiLuNet,用于x射线图像的语义分割。该网络能够在训练数据非常有限的情况下进行医学图像分割。通过骨骼的形状拟合,我们可以非常准确地确定腰椎检查的目标区域的位置。我们收集数据集并由医生进行注释,用于模型训练和性能评估。与最先进的方法相比,所提出的技术在相同的训练数据下提供了更好的miou和更高的成功率。实验结果证明了我们的网络对腰椎、骶骨和股骨头进行语义分割的可行性。代码可从https://github.com/LuanTran07/BiLUnet-Lumbar-Spine获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信