APLICAÇÃO DE REDES NEURAIS CONVOLUCIONAIS NO RECONHECIMENTO DE CARACTERES EM PLACAS INFORMATIVAS JAPONESAS

Rafael Yuji Hirata Furusho, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri
{"title":"APLICAÇÃO DE REDES NEURAIS CONVOLUCIONAIS NO RECONHECIMENTO DE CARACTERES EM PLACAS INFORMATIVAS JAPONESAS","authors":"Rafael Yuji Hirata Furusho, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri","doi":"10.5747/ce.2021.v13.n2.e355","DOIUrl":null,"url":null,"abstract":"Unlike most Western countries, which have a Latin-derived base alphabet, Japan has two syllabic alphabets called Hiragana and Katakana, and a Chinese alphabet, called Kanji. The vast differences in the writing of these Eastern alphabets to Western alphabets, Western alphabet-based OCR algorithms tend not to efficiently detect Japanese characters. This work contributes to a methodology applying digital image processing techniques, such as color range-based segmentation, edge detection and mathematical morphology techniques, to detect Japanese traffic informationalplates correctly the perspective and segment the characters contained in it. A convolutional neural network wasused to perform the classification of Hiragana characters contained in the segmented plates, withaccuracyof 94.37%.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n2.e355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unlike most Western countries, which have a Latin-derived base alphabet, Japan has two syllabic alphabets called Hiragana and Katakana, and a Chinese alphabet, called Kanji. The vast differences in the writing of these Eastern alphabets to Western alphabets, Western alphabet-based OCR algorithms tend not to efficiently detect Japanese characters. This work contributes to a methodology applying digital image processing techniques, such as color range-based segmentation, edge detection and mathematical morphology techniques, to detect Japanese traffic informationalplates correctly the perspective and segment the characters contained in it. A convolutional neural network wasused to perform the classification of Hiragana characters contained in the segmented plates, withaccuracyof 94.37%.
卷积神经网络在日本信息板字符识别中的应用
与大多数使用拉丁衍生字母的西方国家不同,日本有两个音节字母——平假名和片假名,以及一个汉字字母——汉字。由于这些东方字母与西方字母的书写方式存在巨大差异,西方基于字母的OCR算法往往无法有效地检测日本字符。本研究提出了一种应用数字图像处理技术的方法,如基于颜色范围的分割、边缘检测和数学形态学技术,以正确地检测日本交通信息车牌的视角并分割其中包含的字符。利用卷积神经网络对分割板中包含的平假名字符进行分类,准确率为94.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信