Gradient Descent Machine Learning with Equivalency Testing for Non-Subject Dependent Applications in Human Activity Recognition

IF 1.1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
T. Woolman, J.L. Pickard
{"title":"Gradient Descent Machine Learning with Equivalency Testing for Non-Subject Dependent Applications in Human Activity Recognition","authors":"T. Woolman, J.L. Pickard","doi":"10.4108/eetcasa.v8i24.1996","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: A solution to subject-independent HAR prediction through machine learning classification algorithms using statistical equivalency for comparative analysis between independent groups with non-subject training dependencies.OBJECTIVES: To indicate that the multinomial predictive classification model that was trained and optimized on the one-subject control group is at least partially extensible to multiple independent experiment groups for at least one activity class.METHODS: Gradient boosted machine multinomial classification algorithm is trained on a single individual with the classifier trained on all activity classes as a multinomial classification problem.RESULTS: Levene-Wellek-Welch (LWW) Statistic calculated as 0.021, with a Critical Value for LWW of 0.026, using an alpha of 0.05.CONCLUSION: Confirmed falsifiability that incorporates reproducible methods into the quasi-experiment design applied to the field of machine learning for human activity recognition.","PeriodicalId":43034,"journal":{"name":"EAI Endorsed Transactions on Scalable Information Systems","volume":"49 1","pages":"e7"},"PeriodicalIF":1.1000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Scalable Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetcasa.v8i24.1996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

INTRODUCTION: A solution to subject-independent HAR prediction through machine learning classification algorithms using statistical equivalency for comparative analysis between independent groups with non-subject training dependencies.OBJECTIVES: To indicate that the multinomial predictive classification model that was trained and optimized on the one-subject control group is at least partially extensible to multiple independent experiment groups for at least one activity class.METHODS: Gradient boosted machine multinomial classification algorithm is trained on a single individual with the classifier trained on all activity classes as a multinomial classification problem.RESULTS: Levene-Wellek-Welch (LWW) Statistic calculated as 0.021, with a Critical Value for LWW of 0.026, using an alpha of 0.05.CONCLUSION: Confirmed falsifiability that incorporates reproducible methods into the quasi-experiment design applied to the field of machine learning for human activity recognition.
基于等效性测试的梯度下降机器学习在人类活动识别中的应用
简介:通过机器学习分类算法,利用统计等效性对具有非主题训练依赖性的独立组进行比较分析,解决独立于主题的HAR预测。目的:表明在单受试者对照组上训练和优化的多项预测分类模型至少部分可扩展到至少一个活动类的多个独立实验组。方法:梯度增强机器多项式分类算法在单个个体上训练,分类器在所有活动类上训练作为一个多项式分类问题。结果:Levene-Wellek-Welch (LWW)统计量为0.021,临界值为0.026,alpha为0.05。结论:证实可证伪性,将可重复方法纳入准实验设计,应用于人类活动识别的机器学习领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EAI Endorsed Transactions on Scalable Information Systems
EAI Endorsed Transactions on Scalable Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.80
自引率
15.40%
发文量
49
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信