Corrections to the paper ``Roots of scalar operator-valued analytic functions and their functional calculus''

C. Apostol
{"title":"Corrections to the paper ``Roots of scalar operator-valued analytic functions and their functional calculus''","authors":"C. Apostol","doi":"10.32917/HMJ/1206138663","DOIUrl":null,"url":null,"abstract":"Let X be a Banach space, T a linear bounded operator acting in X and / an analytic complex function defined in a neighborhood of σ(Γ). Let us suppose also that / is non-constant in each connected component of its domain of definition which intersects ύ{T). In this paper we study the spectral properties of T if f(T) is a spectral operator of scalar type. The example of Stampfli (see [18]) shows that in general T is not a scalar operator. We shall prove that T is a 0-scalar operator in the sense of [15], where Φ is a suitable basic algebra.","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"30 1","pages":"449-449"},"PeriodicalIF":0.0000,"publicationDate":"1968-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206138663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let X be a Banach space, T a linear bounded operator acting in X and / an analytic complex function defined in a neighborhood of σ(Γ). Let us suppose also that / is non-constant in each connected component of its domain of definition which intersects ύ{T). In this paper we study the spectral properties of T if f(T) is a spectral operator of scalar type. The example of Stampfli (see [18]) shows that in general T is not a scalar operator. We shall prove that T is a 0-scalar operator in the sense of [15], where Φ is a suitable basic algebra.
对“标量算子值解析函数的根及其泛函演算”一文的修正
设X是Banach空间,T是作用于X的线性有界算子,/是定义在σ(Γ)邻域内的解析复函数。让我们也假设/在它的定义域与T相交的每一个相连的分量中都是非恒定的。本文研究了f(T)是标量型谱算子时T的谱性质。Stampfli的例子(参见[18])表明,通常T不是标量算子。我们将证明T是[15]意义上的0标量算子,其中Φ是一个合适的基本代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信