An Improved Solution to the Frequency-Invariant Beamforming with Concentric Circular Microphone Arrays

Xudong Zhao, Gongping Huang, Jingdong Chen, J. Benesty
{"title":"An Improved Solution to the Frequency-Invariant Beamforming with Concentric Circular Microphone Arrays","authors":"Xudong Zhao, Gongping Huang, Jingdong Chen, J. Benesty","doi":"10.1109/ICASSP40776.2020.9054141","DOIUrl":null,"url":null,"abstract":"Frequency-invariant beamforming with circular microphone arrays (CMAs) has drawn a significant amount of attention for its steering flexibility and high directivity. However, frequency-invariant beam-forming with CMAs often suffers from the so-called null problem, which is caused by the zeros of the Bessel functions; then, concentric CMAs (CCMAs) are used to deal with this problem. While frequency-invariant beamforming with CCMAs can mitigate the null problem, the beampattern is still suffering from distortion due to s-patial aliasing at high frequencies. In this paper, we find that the spatial aliasing problem is caused by higher-order circular harmonics. To deal with this problem, we take the aliasing harmonics into account and approximate the beampattern with a higher truncation order of the Jacobi-Anger expansion than required. Then, the beam-forming filter is determined by minimizing the errors between the desired directivity pattern and the approximated one. Simulation results show that the developed method can mitigate the distortion of the beampattern caused by spatial aliasing.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"5 1","pages":"556-560"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Frequency-invariant beamforming with circular microphone arrays (CMAs) has drawn a significant amount of attention for its steering flexibility and high directivity. However, frequency-invariant beam-forming with CMAs often suffers from the so-called null problem, which is caused by the zeros of the Bessel functions; then, concentric CMAs (CCMAs) are used to deal with this problem. While frequency-invariant beamforming with CCMAs can mitigate the null problem, the beampattern is still suffering from distortion due to s-patial aliasing at high frequencies. In this paper, we find that the spatial aliasing problem is caused by higher-order circular harmonics. To deal with this problem, we take the aliasing harmonics into account and approximate the beampattern with a higher truncation order of the Jacobi-Anger expansion than required. Then, the beam-forming filter is determined by minimizing the errors between the desired directivity pattern and the approximated one. Simulation results show that the developed method can mitigate the distortion of the beampattern caused by spatial aliasing.
圆形传声器阵列的频率不变波束形成技术以其转向灵活性和高指向性而受到广泛关注。然而,使用cma的频率不变波束形成通常会遇到所谓的零问题,这是由贝塞尔函数的零引起的;然后,采用同心cma (ccma)来处理这一问题。虽然使用ccma的频率不变波束形成可以缓解零问题,但由于高频下的s偏混叠,波束方向图仍然受到畸变的影响。在本文中,我们发现空间混叠问题是由高阶圆谐波引起的。为了解决这个问题,我们考虑了混叠谐波,并使用比要求更高的Jacobi-Anger展开截断阶来近似波束模式。然后,通过最小化期望方向图与近似方向图之间的误差来确定波束形成滤波器。仿真结果表明,该方法能有效地抑制空间混叠引起的波束畸变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信