Novel Degree-Based Topological Descriptors of Fenofibrate Using M-Polynomial

IF 0.7 Q2 MATHEMATICS
Muhammad Kamran, Muhammad Farman, Seyma Ozon Yildirim, Sadik Delen, I. Naci Cangul, Maria Akram, M. Pandit
{"title":"Novel Degree-Based Topological Descriptors of Fenofibrate Using M-Polynomial","authors":"Muhammad Kamran, Muhammad Farman, Seyma Ozon Yildirim, Sadik Delen, I. Naci Cangul, Maria Akram, M. Pandit","doi":"10.1155/2023/2037061","DOIUrl":null,"url":null,"abstract":"Chemical graph theory is currently expanding the use of topological indices to numerically encode chemical structure. The prediction of the characteristics provided by the chemical structure of the molecule is a key feature of these topological indices. The concepts from graph theory are presented in a brief discussion of one of its many applications to chemistry, namely, the use of topological indices in quantitative structure-activity relationship (QSAR) studies and quantitative structure-property relationship (QSPR) studies. This study uses the M-polynomial approach, a newly discovered technique, to determine the topological indices of the medication fenofibrate. With the use of degree-based topological indices, we additionally construct a few novel degree based topological descriptors of fenofibrate structure using M-polynomial. When using M-polynomials in place of degree-based indices, the computation of the topological indices can be completed relatively quickly. The topological indices are also plotted. Using M-polynomial, we compute novel formulas for the modified first Zagreb index, modified second Zagreb index, first and second hyper Zagreb indices, SK index, \n \n S\n \n \n K\n \n \n 1\n \n \n \n index, \n \n S\n \n \n K\n \n \n 2\n \n \n \n index, modified Albertson index, redefined first Zagreb index, and degree-based topological indices.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"143 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2037061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical graph theory is currently expanding the use of topological indices to numerically encode chemical structure. The prediction of the characteristics provided by the chemical structure of the molecule is a key feature of these topological indices. The concepts from graph theory are presented in a brief discussion of one of its many applications to chemistry, namely, the use of topological indices in quantitative structure-activity relationship (QSAR) studies and quantitative structure-property relationship (QSPR) studies. This study uses the M-polynomial approach, a newly discovered technique, to determine the topological indices of the medication fenofibrate. With the use of degree-based topological indices, we additionally construct a few novel degree based topological descriptors of fenofibrate structure using M-polynomial. When using M-polynomials in place of degree-based indices, the computation of the topological indices can be completed relatively quickly. The topological indices are also plotted. Using M-polynomial, we compute novel formulas for the modified first Zagreb index, modified second Zagreb index, first and second hyper Zagreb indices, SK index, S K 1 index, S K 2 index, modified Albertson index, redefined first Zagreb index, and degree-based topological indices.
基于m -多项式的非诺贝特的新颖度拓扑描述符
化学图论目前正在扩展使用拓扑指标来对化学结构进行数字编码。分子的化学结构所提供的特性预测是这些拓扑指数的一个关键特征。图论在化学中的众多应用之一,即拓扑指数在定量构效关系(QSAR)研究和定量构效关系(QSPR)研究中的使用,简要讨论了图论的概念。本研究采用m -多项式方法,一种新发现的技术,以确定非诺贝特药物的拓扑指标。此外,利用基于度的拓扑指标,利用m -多项式构造了一些新的基于度的非诺贝特结构拓扑描述符。当使用m多项式代替基于度的指标时,拓扑指标的计算可以相对较快地完成。还绘制了拓扑指标。利用m -多项式,我们计算了改进的第一萨格勒布指数、改进的第二萨格勒布指数、第一和第二超级萨格勒布指数、SK指数、s1指数、s2指数、改进的Albertson指数、重新定义的第一萨格勒布指数和基于度的拓扑指数的新公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信