ON HYPERCONVEXITY AND TOWARDS BUNDLE-VALUED KERNEL ASYMPTOTICS ON LOCALLY PSEUDOCONVEX DOMAINS

IF 0.2 Q4 MATHEMATICS
T. Ohsawa
{"title":"ON HYPERCONVEXITY AND TOWARDS BUNDLE-VALUED KERNEL ASYMPTOTICS ON LOCALLY PSEUDOCONVEX DOMAINS","authors":"T. Ohsawa","doi":"10.59277/rrmpa.2023.169.189","DOIUrl":null,"url":null,"abstract":"After recalling basic results on the L2 ¯∂-cohomology groups and known existence criteria for bounded plurisubharmonic exhaustion functions on locally pseudoconvex bounded domains, results on the Bergman kernel on hyperconvex domains will be reviewed. Then, on locally pseudoconvex domains with certain regularity constraints on the boundary, a result on the asymptotics of the Bergman kernel is proved without assuming the existence of plurisubharmonic exhaustion functions, as an application of the finite-dimensionality of L2 ¯∂-cohomology groups.","PeriodicalId":45738,"journal":{"name":"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES","volume":"44 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59277/rrmpa.2023.169.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

After recalling basic results on the L2 ¯∂-cohomology groups and known existence criteria for bounded plurisubharmonic exhaustion functions on locally pseudoconvex bounded domains, results on the Bergman kernel on hyperconvex domains will be reviewed. Then, on locally pseudoconvex domains with certain regularity constraints on the boundary, a result on the asymptotics of the Bergman kernel is proved without assuming the existence of plurisubharmonic exhaustion functions, as an application of the finite-dimensionality of L2 ¯∂-cohomology groups.
局部伪凸域上的超凸性及束值核渐近性
在回顾了L2¯∂-上同调群的基本结果和局部伪凸有界域上已知的有界多次调和穷尽函数的存在准则之后,我们将回顾超凸域上Bergman核的结果。然后,在边界上具有一定正则约束的局部伪凸域上,作为L2¯∂-上同调群有限维性的一个应用,在不假设多重次谐波损耗函数存在的情况下证明了Bergman核的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信