{"title":"Enclosing Chebyshev Expansions in Linear Time","authors":"B. Hashemi","doi":"10.1145/3319395","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing rigorous enclosures for polynomials represented in the Chebyshev basis. Our aim is to compare and develop algorithms with a linear complexity in terms of the polynomial degree. A first category of methods relies on a direct interval evaluation of the given Chebyshev expansion in which Chebyshev polynomials are bounded, e.g., with a divide-and-conquer strategy. Our main category of methods that are based on the Clenshaw recurrence includes interval Clenshaw with defect correction (ICDC), and the spectral transformation of Clenshaw recurrence rewritten as a discrete dynamical system. An extension of the barycentric representation to interval arithmetic is also considered that has a log-linear complexity as it takes advantage of a verified discrete cosine transform. We compare different methods and provide illustrative numerical experiments. In particular, our eigenvalue-based methods are interesting for bounding the range of high-degree interval polynomials. Some of the methods rigorously compute narrow enclosures for high-degree Chebyshev expansions at thousands of points in a few seconds on an average computer. We also illustrate how to employ our methods as an automatic a posteriori forward error analysis tool to monitor the accuracy of the Chebfun feval command.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"160 1","pages":"1 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3319395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We consider the problem of computing rigorous enclosures for polynomials represented in the Chebyshev basis. Our aim is to compare and develop algorithms with a linear complexity in terms of the polynomial degree. A first category of methods relies on a direct interval evaluation of the given Chebyshev expansion in which Chebyshev polynomials are bounded, e.g., with a divide-and-conquer strategy. Our main category of methods that are based on the Clenshaw recurrence includes interval Clenshaw with defect correction (ICDC), and the spectral transformation of Clenshaw recurrence rewritten as a discrete dynamical system. An extension of the barycentric representation to interval arithmetic is also considered that has a log-linear complexity as it takes advantage of a verified discrete cosine transform. We compare different methods and provide illustrative numerical experiments. In particular, our eigenvalue-based methods are interesting for bounding the range of high-degree interval polynomials. Some of the methods rigorously compute narrow enclosures for high-degree Chebyshev expansions at thousands of points in a few seconds on an average computer. We also illustrate how to employ our methods as an automatic a posteriori forward error analysis tool to monitor the accuracy of the Chebfun feval command.