{"title":"Direct and inverse spectral problems for a star graph of Stieltjes strings damped at a pendant vertex","authors":"Lu Yang, Guangsheng Wei, V. Pivovarchik","doi":"10.3934/ipi.2020063","DOIUrl":null,"url":null,"abstract":"A spectral problem occurring in description of small transverse vibrations of a star graph of Stieltjes strings is considered. At all but one pendant vertices Dirichlet conditions are imposed which mean that these vertices are clamped. One vertex (the root) can move with damping in the direction orthogonal to the equilibrium position of the strings. We describe the spectrum of such spectral problem. The corresponding inverse problem lies in recovering the values of point masses and the lengths of the intervals between the masses using the spectrum and some other parameters. We propose conditions on a sequence of complex numbers and a collection of real numbers to be the spectrum of a problem we consider and the lengths of the edges, correspondingly.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"50 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2020063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
A spectral problem occurring in description of small transverse vibrations of a star graph of Stieltjes strings is considered. At all but one pendant vertices Dirichlet conditions are imposed which mean that these vertices are clamped. One vertex (the root) can move with damping in the direction orthogonal to the equilibrium position of the strings. We describe the spectrum of such spectral problem. The corresponding inverse problem lies in recovering the values of point masses and the lengths of the intervals between the masses using the spectrum and some other parameters. We propose conditions on a sequence of complex numbers and a collection of real numbers to be the spectrum of a problem we consider and the lengths of the edges, correspondingly.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.