CNN-SVR for CRISPR-Cpf1 Guide RNA Activity Prediction with Data Augmentation

Guishan Zhang, X. Dai
{"title":"CNN-SVR for CRISPR-Cpf1 Guide RNA Activity Prediction with Data Augmentation","authors":"Guishan Zhang, X. Dai","doi":"10.1145/3314367.3314383","DOIUrl":null,"url":null,"abstract":"CRISPR from Prevotella and Francisella 1 (Cpf1), a RNA-guided DNA endonuclease that belongs to a novel class II CRISPR system, has recently become a popular tool for genome editing. How to improve the on-target efficiency and specificity of this system is an important and challenging problem. This paper presents a method for CRISPR-Cpf1 guide RNA activity prediction. Convolutional Neural Network (CNN) and support vector regression (SVR) are combined for this purpose. In the proposed framework, single-base substitution mutation data augmentation technique is applied to generate guide RNAs with indel frequencies, thus increasing the labeled data. In the hybrid CNN-SVR model, CNN works as a trainable feature extractor and SVR performs as the regression operator. Specifically, a merged CNN-based regression model is used to pre-train the model for predicting Cpf1 activity based on target sequence composition. Considering the chromatin accessibility information, the SVR is used to generate the predictions. Experiments on the commonly datasets show that our algorithm outperforms the available state-of-the-art tools.","PeriodicalId":20485,"journal":{"name":"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314367.3314383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

CRISPR from Prevotella and Francisella 1 (Cpf1), a RNA-guided DNA endonuclease that belongs to a novel class II CRISPR system, has recently become a popular tool for genome editing. How to improve the on-target efficiency and specificity of this system is an important and challenging problem. This paper presents a method for CRISPR-Cpf1 guide RNA activity prediction. Convolutional Neural Network (CNN) and support vector regression (SVR) are combined for this purpose. In the proposed framework, single-base substitution mutation data augmentation technique is applied to generate guide RNAs with indel frequencies, thus increasing the labeled data. In the hybrid CNN-SVR model, CNN works as a trainable feature extractor and SVR performs as the regression operator. Specifically, a merged CNN-based regression model is used to pre-train the model for predicting Cpf1 activity based on target sequence composition. Considering the chromatin accessibility information, the SVR is used to generate the predictions. Experiments on the commonly datasets show that our algorithm outperforms the available state-of-the-art tools.
CNN-SVR用于CRISPR-Cpf1向导RNA活性预测与数据增强
来自普雷沃氏菌和弗朗西斯氏菌1 (Cpf1)的CRISPR是一种rna引导的DNA内切酶,属于一种新的II类CRISPR系统,最近成为基因组编辑的流行工具。如何提高该系统的靶效率和特异性是一个重要而具有挑战性的问题。本文提出了一种预测CRISPR-Cpf1向导RNA活性的方法。卷积神经网络(CNN)和支持向量回归(SVR)相结合。在该框架中,采用单碱基替代突变数据扩增技术生成频率为indel的引导rna,从而增加标记数据。在CNN-SVR混合模型中,CNN作为可训练特征提取器,SVR作为回归算子。具体而言,基于目标序列组成的Cpf1活性预测模型采用基于cnn的合并回归模型进行预训练。考虑染色质可及性信息,采用SVR进行预测。在常用数据集上的实验表明,我们的算法优于现有的最先进的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信