Quality not Quantity! A Qualitative Evaluation and Proposal for Understanding the Depth of Audience “Knowledge” Post Data Extraction

Kimberley Hemmings-Jarrett, Terryann Barnett, Julian Jarrett, M. Blake, Denise E. Agosto
{"title":"Quality not Quantity! A Qualitative Evaluation and Proposal for Understanding the Depth of Audience “Knowledge” Post Data Extraction","authors":"Kimberley Hemmings-Jarrett, Terryann Barnett, Julian Jarrett, M. Blake, Denise E. Agosto","doi":"10.1109/IRI49571.2020.00031","DOIUrl":null,"url":null,"abstract":"Knowledge is defined as…the result of machine extracted patterns; humans making sense of their environment; information generated and aggregated from software services or as the lowest form of human cognition. Different perspectives, different domains, but one concept. Information scientists are often concerned with retrieving knowledge from data sources and sharing that knowledge with concerned stakeholders; with such differing views on what qualifies as knowledge a cross-domain approach might prove beneficial. This work is a qualitative assessment of the layers of knowledge intended to bridge the gap between the analyst and their intended or unintended audiences. It examines the benefit of abstracting concepts used in the education discipline to justify including a post-evaluation stage to the Knowledge Discovered through Databases (KDD) framework. It also intends to promote awareness of the various human cognitive capacities and provide a useful approach for communicating and evaluating machine-extracted knowledge that supports higher order thinking.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":"175 1","pages":"164-171"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge is defined as…the result of machine extracted patterns; humans making sense of their environment; information generated and aggregated from software services or as the lowest form of human cognition. Different perspectives, different domains, but one concept. Information scientists are often concerned with retrieving knowledge from data sources and sharing that knowledge with concerned stakeholders; with such differing views on what qualifies as knowledge a cross-domain approach might prove beneficial. This work is a qualitative assessment of the layers of knowledge intended to bridge the gap between the analyst and their intended or unintended audiences. It examines the benefit of abstracting concepts used in the education discipline to justify including a post-evaluation stage to the Knowledge Discovered through Databases (KDD) framework. It also intends to promote awareness of the various human cognitive capacities and provide a useful approach for communicating and evaluating machine-extracted knowledge that supports higher order thinking.
质量不是数量!了解受众“知识”后数据提取深度的定性评价与建议
知识被定义为……机器提取模式的结果;人类理解他们的环境;由软件服务产生和聚合的信息,或作为人类认知的最低形式。不同的视角,不同的领域,但只有一个概念。信息科学家经常关注从数据源中检索知识并与相关利益相关者共享知识;由于对什么是知识有不同的看法,跨领域的方法可能是有益的。这项工作是对知识层的定性评估,旨在弥合分析师与其预期或非预期受众之间的差距。它考察了在教育学科中使用抽象概念的好处,以证明在通过数据库发现的知识(KDD)框架中包括一个后评估阶段是合理的。它还旨在提高人们对各种人类认知能力的认识,并提供一种有用的方法来交流和评估支持高阶思维的机器提取的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信