An autocorrelation-based copula model for producing realistic clear-sky index and photovoltaic power generation time-series

J. Munkhammar, J. Widén
{"title":"An autocorrelation-based copula model for producing realistic clear-sky index and photovoltaic power generation time-series","authors":"J. Munkhammar, J. Widén","doi":"10.1109/PVSC.2017.8366009","DOIUrl":null,"url":null,"abstract":"This study presents a method for using copulas to model the temporal variability of the clear-sky index. The method utilizes the autocorrelation function and correlated outputs for $N$ time-steps are obtained. Results from the copula model are, in terms of distribution, autocorrelation, step changes and mean daily distribution, compared with the original data set and with an uncorrelated model based on random clear-sky index data. The copula model is shown to be superior to the uncorrelated model in all these aspects.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"199 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2017.8366009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This study presents a method for using copulas to model the temporal variability of the clear-sky index. The method utilizes the autocorrelation function and correlated outputs for $N$ time-steps are obtained. Results from the copula model are, in terms of distribution, autocorrelation, step changes and mean daily distribution, compared with the original data set and with an uncorrelated model based on random clear-sky index data. The copula model is shown to be superior to the uncorrelated model in all these aspects.
真实晴空指数与光伏发电时间序列的自相关耦合模型
本文提出了一种利用copula模拟晴空指数的时间变异性的方法。该方法利用自相关函数,得到$N$个时间步长的相关输出。copula模型在分布、自相关、阶跃变化和平均日分布方面与原始数据集和基于随机晴空指数数据的不相关模型进行了比较。在所有这些方面都表明,联结模型优于不相关模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信