Record Low Contact Resistivity (4.4×10−10 Ω-cm2) to Ge Using In-situ B and Sn Incorporation by CVD With Low Thermal Budget (≤400°C) and Without Ga

Fang-Liang Lu, Chung-En Tsai, Chih-Hsiung Huang, Hung-Yu Ye, Shih-Ya Lin, C. W. Liu
{"title":"Record Low Contact Resistivity (4.4×10−10 Ω-cm2) to Ge Using In-situ B and Sn Incorporation by CVD With Low Thermal Budget (≤400°C) and Without Ga","authors":"Fang-Liang Lu, Chung-En Tsai, Chih-Hsiung Huang, Hung-Yu Ye, Shih-Ya Lin, C. W. Liu","doi":"10.23919/VLSIT.2019.8776581","DOIUrl":null,"url":null,"abstract":"The record low contact resistivity $(\\rho_{\\text{c}})$ of $4.4\\text{x}10^{-10}\\Omega-\\text{cm}^{2}$ is achieved in Ti metal contact to in-situ B-doped $\\text{GeSn}$ using B $(> 1\\text{x}10^{21}\\text{cm}^{-3})$ and Sn $(> 12\\%)$ segregations at the Ti/GeSn:B interface. Sn incorporation into Ge lowers the Schottky barrier height of holes. Increasing B doping at the $\\text{Ti}/\\text{GeSn}:\\text{B}$ interface reduces the hole tunneling distance. Thanks to the low growth temperature (305°C) of the chemical vapor deposition using Ge2H6, the GeSn:B with the bulk active [B] of $2.1\\text{x}10^{20}\\text{cm}^{-3} (>> > \\text{the}$ solid solubility of B in $\\text{Ge}=5.5\\text{x}10^{18}\\text{cm}^{-3}$) and the bulk [Sn] of 4.9% is successfully grown. Without the needs of the previously reported Ga dopants and the high temperature annealing for dopant activation, the record low $\\rho_{\\text{c}}$ is achieved with all the process temperatures $\\leq 400^{\\text{o}}\\text{C}$.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"197 1","pages":"T178-T179"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The record low contact resistivity $(\rho_{\text{c}})$ of $4.4\text{x}10^{-10}\Omega-\text{cm}^{2}$ is achieved in Ti metal contact to in-situ B-doped $\text{GeSn}$ using B $(> 1\text{x}10^{21}\text{cm}^{-3})$ and Sn $(> 12\%)$ segregations at the Ti/GeSn:B interface. Sn incorporation into Ge lowers the Schottky barrier height of holes. Increasing B doping at the $\text{Ti}/\text{GeSn}:\text{B}$ interface reduces the hole tunneling distance. Thanks to the low growth temperature (305°C) of the chemical vapor deposition using Ge2H6, the GeSn:B with the bulk active [B] of $2.1\text{x}10^{20}\text{cm}^{-3} (>> > \text{the}$ solid solubility of B in $\text{Ge}=5.5\text{x}10^{18}\text{cm}^{-3}$) and the bulk [Sn] of 4.9% is successfully grown. Without the needs of the previously reported Ga dopants and the high temperature annealing for dopant activation, the record low $\rho_{\text{c}}$ is achieved with all the process temperatures $\leq 400^{\text{o}}\text{C}$.
在低热收支(≤400°C)和不含Ga的情况下,通过CVD原位掺杂B和Sn,记录低接触电阻率(4.4×10−10 Ω-cm2)到Ge
利用B $(> 1\text{x}10^{21}\text{cm}^{-3})$和Sn $(> 12\%)$在Ti/GeSn:B界面上的分离,在Ti金属与原位B掺杂$\text{GeSn}$的接触中,获得了创纪录的低接触电阻$(\rho_{\text{c}})$$4.4\text{x}10^{-10}\Omega-\text{cm}^{2}$。Sn与Ge的掺入降低了空穴的肖特基势垒高度。在$\text{Ti}/\text{GeSn}:\text{B}$界面处增加B掺杂可以减小空穴隧穿距离。由于采用Ge2H6化学气相沉积的生长温度较低(305℃),制备的GeSn:B的体积活性[B]为$2.1\text{x}10^{20}\text{cm}^{-3} (>> > \text{the}$, B在$\text{Ge}=5.5\text{x}10^{18}\text{cm}^{-3}$中的固溶度为4.9% is successfully grown. Without the needs of the previously reported Ga dopants and the high temperature annealing for dopant activation, the record low $\rho_{\text{c}}$ is achieved with all the process temperatures $\leq 400^{\text{o}}\text{C}$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信