Nil-Clean Rings with Involution

Pub Date : 2021-07-26 DOI:10.1142/s1005386721000298
Jian Cui, Guoli Xia, Yiqiang Zhou
{"title":"Nil-Clean Rings with Involution","authors":"Jian Cui, Guoli Xia, Yiqiang Zhou","doi":"10.1142/s1005386721000298","DOIUrl":null,"url":null,"abstract":"A [Formula: see text]-ring [Formula: see text] is called a nil [Formula: see text]-clean ring if every element of [Formula: see text] is a sum of a projection and a nilpotent. Nil [Formula: see text]-clean rings are the [Formula: see text]-version of nil-clean rings introduced by Diesl. This paper is about the nil [Formula: see text]-clean property of rings with emphasis on matrix rings. We show that a [Formula: see text]-ring [Formula: see text] is nil [Formula: see text]-clean if and only if [Formula: see text] is nil and [Formula: see text] is nil [Formula: see text]-clean. For a 2-primal [Formula: see text]-ring [Formula: see text], with the induced involution given by[Formula: see text], the nil [Formula: see text]-clean property of [Formula: see text] is completely reduced to that of [Formula: see text]. Consequently, [Formula: see text] is not a nil [Formula: see text]-clean ring for [Formula: see text], and [Formula: see text] is a nil [Formula: see text]-clean ring if and only if [Formula: see text] is nil, [Formula: see text]is a Boolean ring and [Formula: see text] for all [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A [Formula: see text]-ring [Formula: see text] is called a nil [Formula: see text]-clean ring if every element of [Formula: see text] is a sum of a projection and a nilpotent. Nil [Formula: see text]-clean rings are the [Formula: see text]-version of nil-clean rings introduced by Diesl. This paper is about the nil [Formula: see text]-clean property of rings with emphasis on matrix rings. We show that a [Formula: see text]-ring [Formula: see text] is nil [Formula: see text]-clean if and only if [Formula: see text] is nil and [Formula: see text] is nil [Formula: see text]-clean. For a 2-primal [Formula: see text]-ring [Formula: see text], with the induced involution given by[Formula: see text], the nil [Formula: see text]-clean property of [Formula: see text] is completely reduced to that of [Formula: see text]. Consequently, [Formula: see text] is not a nil [Formula: see text]-clean ring for [Formula: see text], and [Formula: see text] is a nil [Formula: see text]-clean ring if and only if [Formula: see text] is nil, [Formula: see text]is a Boolean ring and [Formula: see text] for all [Formula: see text].
分享
查看原文
有对合的零清洁环
如果[公式:见文本]的每个元素都是投影和幂零的和,则一个[公式:见文本]-环[公式:见文本]被称为nil[公式:见文本]-干净环。Nil[公式:见文本]-clean rings是[公式:见文本]- diesel引入的Nil -clean rings的版本。本文讨论了环的零[公式:见文]-洁净性,重点讨论了矩阵环。我们证明了[公式:见文]-环[公式:见文]为nil[公式:见文]-清洁当且仅当[公式:见文]为nil且[公式:见文]为nil[公式:见文]-清洁。对于一个2-原[公式:见文]-环[公式:见文],在[公式:见文]给出的诱导对合下,[公式:见文]的零[公式:见文]-洁净性质完全化约为[公式:见文]的零[公式:见文]性质。因此,[Formula: see text]不是nil [Formula: see text]-clean ring for [Formula: see text], [Formula: see text]是nil [Formula: see text]-clean ring当且仅当[Formula: see text]为nil, [Formula: see text]是布尔环,[Formula: see text]为所有[Formula: see text]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信