Entropy generation analysis in a gasket plate heat exchanger using non-spherical shape of alumina boehmite nanoparticles

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
E. Nogueira
{"title":"Entropy generation analysis in a gasket plate heat exchanger using non-spherical shape of alumina boehmite nanoparticles","authors":"E. Nogueira","doi":"10.2478/auoc-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract The analysis deals with the thermo-hydraulic performance of a Gasket Plate Heat Exchanger used for cooling vegetable oils with a water-ethylene glycol 50% and volume fractions of non-spherical nanoparticles mixture as a refrigerant. The heat exchanger has 75 plates with a chevron angle equal to 30º. The Reynolds number of the refrigerant varies from 80 to 1530. The Reynolds number of the sunflower vegetable oil is fixed and equal to 30. The non-spherical nanoparticles used for analysis are platelet, cylindrical and brick types. Graphical results are presented for global heat transfer coefficient, heat capacity ratio, heat transfer rate, outlet temperatures, thermal and viscous entropy generation rate, and Bejan thermodynamic number. The results obtained allow us to conclude that it is possible to work with low relative flow rates using non-spherical nanoparticles, emphasizing platelet nanoparticles. The entropy generations analysis shows that very high flow rates of the refrigerant dissipate much of the energy in viscous form and do not contribute to oil cooling, with a consequent increase in the heat exchanger operating costs.","PeriodicalId":19641,"journal":{"name":"Ovidius University Annals of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ovidius University Annals of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/auoc-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The analysis deals with the thermo-hydraulic performance of a Gasket Plate Heat Exchanger used for cooling vegetable oils with a water-ethylene glycol 50% and volume fractions of non-spherical nanoparticles mixture as a refrigerant. The heat exchanger has 75 plates with a chevron angle equal to 30º. The Reynolds number of the refrigerant varies from 80 to 1530. The Reynolds number of the sunflower vegetable oil is fixed and equal to 30. The non-spherical nanoparticles used for analysis are platelet, cylindrical and brick types. Graphical results are presented for global heat transfer coefficient, heat capacity ratio, heat transfer rate, outlet temperatures, thermal and viscous entropy generation rate, and Bejan thermodynamic number. The results obtained allow us to conclude that it is possible to work with low relative flow rates using non-spherical nanoparticles, emphasizing platelet nanoparticles. The entropy generations analysis shows that very high flow rates of the refrigerant dissipate much of the energy in viscous form and do not contribute to oil cooling, with a consequent increase in the heat exchanger operating costs.
利用非球形氧化铝薄水铝石纳米颗粒对垫片板式换热器进行熵产分析
摘要分析了以50%的水-乙二醇和体积分数的非球形纳米颗粒混合物作为制冷剂冷却植物油的垫片板式换热器的热工性能。换热器有75块板,其v形角为30º。制冷剂的雷诺数范围为80 ~ 1530。向日葵植物油的雷诺数是固定的,等于30。用于分析的非球形纳米颗粒有血小板型、圆柱形和砖型。给出了总体换热系数、热容量比、换热速率、出口温度、热熵和粘性熵产率以及贝让热力学数的图形结果。得到的结果使我们得出结论,使用非球形纳米颗粒,特别是血小板纳米颗粒,可以在低相对流速下工作。熵代分析表明,非常高的制冷剂流速以粘性形式耗散了大部分能量,并且不利于油冷却,从而增加了热交换器的运行成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ovidius University Annals of Chemistry
Ovidius University Annals of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
自引率
11.10%
发文量
20
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信