Modeling temporal effects of human mobile behavior on location-based social networks

Huiji Gao, Jiliang Tang, Xia Hu, Huan Liu
{"title":"Modeling temporal effects of human mobile behavior on location-based social networks","authors":"Huiji Gao, Jiliang Tang, Xia Hu, Huan Liu","doi":"10.1145/2505515.2505616","DOIUrl":null,"url":null,"abstract":"The rapid growth of location-based social networks (LBSNs) invigorates an increasing number of LBSN users, providing an unprecedented opportunity to study human mobile behavior from spatial, temporal, and social aspects. Among these aspects, temporal effects offer an essential contextual cue for inferring a user's movement. Strong temporal cyclic patterns have been observed in user movement in LBSNs with their correlated spatial and social effects (i.e., temporal correlations). It is a propitious time to model these temporal effects (patterns and correlations) on a user's mobile behavior. In this paper, we present the first comprehensive study of temporal effects on LBSNs. We propose a general framework to exploit and model temporal cyclic patterns and their relationships with spatial and social data. The experimental results on two real-world LBSN datasets validate the power of temporal effects in capturing user mobile behavior, and demonstrate the ability of our framework to select the most effective location prediction algorithm under various combinations of prediction models.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

Abstract

The rapid growth of location-based social networks (LBSNs) invigorates an increasing number of LBSN users, providing an unprecedented opportunity to study human mobile behavior from spatial, temporal, and social aspects. Among these aspects, temporal effects offer an essential contextual cue for inferring a user's movement. Strong temporal cyclic patterns have been observed in user movement in LBSNs with their correlated spatial and social effects (i.e., temporal correlations). It is a propitious time to model these temporal effects (patterns and correlations) on a user's mobile behavior. In this paper, we present the first comprehensive study of temporal effects on LBSNs. We propose a general framework to exploit and model temporal cyclic patterns and their relationships with spatial and social data. The experimental results on two real-world LBSN datasets validate the power of temporal effects in capturing user mobile behavior, and demonstrate the ability of our framework to select the most effective location prediction algorithm under various combinations of prediction models.
基于位置的社交网络中人类移动行为的时间效应建模
基于位置的社交网络(LBSNs)的快速发展激发了越来越多的LBSNs用户,为从空间、时间和社会方面研究人类移动行为提供了前所未有的机会。在这些方面中,时间效应为推断用户的移动提供了重要的上下文线索。在LBSNs的用户移动中观察到强烈的时间循环模式及其相关的空间和社会效应(即时间相关性)。现在是对用户移动行为的这些时间效应(模式和相关性)进行建模的好时机。在本文中,我们首次对lbsn的时间效应进行了全面研究。我们提出了一个总体框架来开发和模拟时间周期模式及其与空间和社会数据的关系。在两个真实的LBSN数据集上的实验结果验证了时间效应在捕获用户移动行为方面的力量,并证明了我们的框架能够在各种预测模型组合下选择最有效的位置预测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信