Space-Time Turbo Bayesian Compressed Sensing for UWB Systems

Depeng Yang, Husheng Li, G. D. Peterson
{"title":"Space-Time Turbo Bayesian Compressed Sensing for UWB Systems","authors":"Depeng Yang, Husheng Li, G. D. Peterson","doi":"10.1109/ICC.2010.5502033","DOIUrl":null,"url":null,"abstract":"A Space-Time Turbo Bayesian Compressed Sensing (STTBCS) algorithm is proposed for Ultra-Wideband (UWB) systems in this paper. Based on the sparsity of UWB signals, the STTBCS algorithm provides an efficient approach for integrating spatial and temporal redundancies. A space-time structure is also designed for exploiting and transferring the spatial and temporal \\emph{a priori} information for signal reconstructions in the framework of Bayesian Compressed Sensing (BCS). Simulation results using experimental UWB echo signals demonstrate that our STTBCS algorithm achieves good performance for UWB systems, compared with the traditional BCS and multitask BCS algorithms.","PeriodicalId":6405,"journal":{"name":"2010 IEEE International Conference on Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2010.5502033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

A Space-Time Turbo Bayesian Compressed Sensing (STTBCS) algorithm is proposed for Ultra-Wideband (UWB) systems in this paper. Based on the sparsity of UWB signals, the STTBCS algorithm provides an efficient approach for integrating spatial and temporal redundancies. A space-time structure is also designed for exploiting and transferring the spatial and temporal \emph{a priori} information for signal reconstructions in the framework of Bayesian Compressed Sensing (BCS). Simulation results using experimental UWB echo signals demonstrate that our STTBCS algorithm achieves good performance for UWB systems, compared with the traditional BCS and multitask BCS algorithms.
超宽带系统的时空Turbo贝叶斯压缩感知
提出了一种适用于超宽带系统的时空Turbo贝叶斯压缩感知算法(STTBCS)。基于超宽带信号的稀疏性,STTBCS算法提供了一种有效的整合时空冗余的方法。在贝叶斯压缩感知(BCS)框架下,设计了一种时空结构,用于提取和传递时空\emph{先验}信息,用于信号重构。实验结果表明,与传统的BCS和多任务BCS算法相比,STTBCS算法在UWB系统中具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信