Entanglement entropy of fermions from Wigner functions: Excited states and open quantum systems

Saranyo Moitra, R. Sensarma
{"title":"Entanglement entropy of fermions from Wigner functions: Excited states and open quantum systems","authors":"Saranyo Moitra, R. Sensarma","doi":"10.1103/physrevb.102.184306","DOIUrl":null,"url":null,"abstract":"We formulate a new ``Wigner characteristics'' based method to calculate entanglement entropies of subsystems of Fermions using Keldysh field theory. This bypasses the requirements of working with complicated manifolds for calculating Renyi entropies for many body systems. We provide an exact analytic formula for Renyi and von-Neumann entanglement entropies of non-interacting open quantum systems, which are initialised in arbitrary Fock states. We use this formalism to look at entanglement entropies of momentum Fock states of one-dimensional Fermions. We show that the entanglement entropy of a Fock state can scale either logarithmically or linearly with subsystem size, depending on whether the number of discontinuities in the momentum distribution is smaller or larger than the subsystem size. This classification of states in terms number of blocks of occupied momenta allows us to analytically estimate the number of critical and non-critical Fock states for a particular subsystem size. We also use this formalism to describe entanglement dynamics of an open quantum system starting with a single domain wall at the center of the system. Using entanglement entropy and mutual information, we understand the dynamics in terms of coherent motion of the domain wall wavefronts, creation and annihilation of domain walls and incoherent exchange of particles with the bath.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.184306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We formulate a new ``Wigner characteristics'' based method to calculate entanglement entropies of subsystems of Fermions using Keldysh field theory. This bypasses the requirements of working with complicated manifolds for calculating Renyi entropies for many body systems. We provide an exact analytic formula for Renyi and von-Neumann entanglement entropies of non-interacting open quantum systems, which are initialised in arbitrary Fock states. We use this formalism to look at entanglement entropies of momentum Fock states of one-dimensional Fermions. We show that the entanglement entropy of a Fock state can scale either logarithmically or linearly with subsystem size, depending on whether the number of discontinuities in the momentum distribution is smaller or larger than the subsystem size. This classification of states in terms number of blocks of occupied momenta allows us to analytically estimate the number of critical and non-critical Fock states for a particular subsystem size. We also use this formalism to describe entanglement dynamics of an open quantum system starting with a single domain wall at the center of the system. Using entanglement entropy and mutual information, we understand the dynamics in terms of coherent motion of the domain wall wavefronts, creation and annihilation of domain walls and incoherent exchange of particles with the bath.
维格纳函数中费米子的纠缠熵:激发态和开放量子系统
利用Keldysh场论,提出了一种新的基于Wigner特征的费米子子系统纠缠熵计算方法。这绕过了为计算许多身体系统的Renyi熵而处理复杂流形的要求。我们给出了在任意Fock状态初始化的非相互作用开放量子系统的Renyi和von-Neumann纠缠熵的精确解析公式。我们用这种形式来观察一维费米子的动量Fock态的纠缠熵。我们证明了Fock态的纠缠熵可以随子系统尺寸成对数或线性缩放,这取决于动量分布中的不连续点的数量是小于还是大于子系统尺寸。根据已占动量块的数量对状态进行分类,使我们能够分析地估计特定子系统尺寸的临界和非临界Fock状态的数量。我们也用这种形式描述了从系统中心的单畴壁开始的开放量子系统的纠缠动力学。利用纠缠熵和互信息,我们从畴壁波前的相干运动、畴壁的产生和湮灭以及粒子与槽体的非相干交换等方面理解了动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信