{"title":"On The Classification of Ls-Sequences","authors":"Christian Weiss","doi":"10.2478/udt-2018-0012","DOIUrl":null,"url":null,"abstract":"Abstract This paper addresses the question whether the LS-sequences constructed in [Car12] yield indeed a new family of low-discrepancy sequences. While it is well known that the case S = 0 corresponds to van der Corput sequences, we prove here that the case S = 1 can be traced back to symmetrized Kronecker sequences and moreover that for S ≥ 2 none of these two types occurs anymore. In addition, our approach allows for an improved discrepancy bound for S = 1 and L arbitrary.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"23 1","pages":"83 - 92"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2018-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract This paper addresses the question whether the LS-sequences constructed in [Car12] yield indeed a new family of low-discrepancy sequences. While it is well known that the case S = 0 corresponds to van der Corput sequences, we prove here that the case S = 1 can be traced back to symmetrized Kronecker sequences and moreover that for S ≥ 2 none of these two types occurs anymore. In addition, our approach allows for an improved discrepancy bound for S = 1 and L arbitrary.