{"title":"Bayesian multi-level mixed-effects model for influenza dynamics","authors":"Hanwen Huang","doi":"10.1111/rssc.12603","DOIUrl":null,"url":null,"abstract":"<p>Influenza A viruses (IAV) are the only influenza viruses known to cause flu pandemics. Understanding the evolution of different sub-types of IAV on their natural hosts is important for preventing and controlling the virus. We propose a mechanism-based Bayesian multi-level mixed-effects model for characterising influenza viral dynamics, described by a set of ordinary differential equations (ODE). Both strain-specific and subject-specific random effects are included for the ODE parameters. Our models can characterise the common features in the population while taking into account the variations among individuals. The random effects selection is conducted at strain level through re-parameterising the covariance parameters of the corresponding random effect distribution. Our method does not need to solve ODE directly. We demonstrate that the posterior computation can proceed via a simple and efficient Markov chain Monte Carlo algorithm. The methods are illustrated using simulated data and a real data from a study relating virus load estimates from influenza infections in ducks.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12603","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Influenza A viruses (IAV) are the only influenza viruses known to cause flu pandemics. Understanding the evolution of different sub-types of IAV on their natural hosts is important for preventing and controlling the virus. We propose a mechanism-based Bayesian multi-level mixed-effects model for characterising influenza viral dynamics, described by a set of ordinary differential equations (ODE). Both strain-specific and subject-specific random effects are included for the ODE parameters. Our models can characterise the common features in the population while taking into account the variations among individuals. The random effects selection is conducted at strain level through re-parameterising the covariance parameters of the corresponding random effect distribution. Our method does not need to solve ODE directly. We demonstrate that the posterior computation can proceed via a simple and efficient Markov chain Monte Carlo algorithm. The methods are illustrated using simulated data and a real data from a study relating virus load estimates from influenza infections in ducks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.