All at Once! A Comprehensive and Tractable Semi-Parametric Method to Elicit Prospect Theory Components

Y. T. Kpegli, Brice Corgnet, Adam Zylbersztejn
{"title":"All at Once! A Comprehensive and Tractable Semi-Parametric Method to Elicit Prospect Theory Components","authors":"Y. T. Kpegli, Brice Corgnet, Adam Zylbersztejn","doi":"10.2139/ssrn.3734348","DOIUrl":null,"url":null,"abstract":"Eliciting all the components of prospect theory –curvature of the utility function, weighting function and loss aversion– remains an open empirical challenge. We develop a semi-parametric method that keeps the tractability of parametric methods while providing more precise estimates. Using the data of Tversky and Kahneman (1992), we revisit their main parametric results. We reject the convexity of the utility function in the loss domain, find lower probability weighting, and confirm loss aversion. We also report that the probability weighting function does not exhibit duality and equality across domains, in line with cumulative prospect theory and in contrast with original prospect and rank dependent utility theories.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3734348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Eliciting all the components of prospect theory –curvature of the utility function, weighting function and loss aversion– remains an open empirical challenge. We develop a semi-parametric method that keeps the tractability of parametric methods while providing more precise estimates. Using the data of Tversky and Kahneman (1992), we revisit their main parametric results. We reject the convexity of the utility function in the loss domain, find lower probability weighting, and confirm loss aversion. We also report that the probability weighting function does not exhibit duality and equality across domains, in line with cumulative prospect theory and in contrast with original prospect and rank dependent utility theories.
一下子!一种综合易操作的半参数化方法提取前景理论成分
引出前景理论的所有组成部分——效用函数的曲率、加权函数和损失厌恶——仍然是一个开放的经验挑战。我们开发了一种半参数方法,在提供更精确估计的同时保持了参数方法的可跟踪性。利用Tversky和Kahneman(1992)的数据,我们重新审视了他们的主要参数结果。我们拒绝效用函数在损失域中的凸性,找到较低的概率权重,并确认损失厌恶。我们还报告了概率加权函数不表现出跨域的对偶性和平等性,这与累积前景理论一致,与原始的前景和等级依赖效用理论相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信