Static spacetimes haunted by a phantom scalar field. II. Dilatonic charged solutions

Masato Nozawa
{"title":"Static spacetimes haunted by a phantom scalar field. II. Dilatonic charged solutions","authors":"Masato Nozawa","doi":"10.1103/physrevd.103.024004","DOIUrl":null,"url":null,"abstract":"We present a method to generate static solutions in the Einstein-Maxwell system with a (phantom) dilaton field in $n(\\ge 4)$-dimensions, based upon the symmetry of the target space for the nonlinear sigma model. Unlike the conventional Einstein-Maxwell-dilaton system, there appears a critical value of the coupling constant for a phantom dilaton field. In the noncritical case, the target space is $\\mathbb R\\times {\\rm SL}(2,\\mathbb R)/H$ with the maximal subgroup $H=\\{{\\rm SO}(2), {\\rm SO}(1,1)\\}$, whereas in the critical case the target space becomes a symmetric pp-wave and the corresponding Killing vectors form a non-semisimple algebra. In either case, we apply the formalism to charge up the neutral solutions and show the analytical expression for dilatonic charged versions of (i) the Fisher solution, (ii) the Gibbons solution, and (iii) the Ellis-Bronnikov solution. We discuss global structures of these solutions in detail. It turns out that some solutions contained in the Fisher and Gibbons classes possess the parallelly propagated (p.p) curvature singularities in the parameter region where all the scalar curvature invariants remain bounded. These p.p curvature singularities are not veiled by a horizon, thrusting them into physically untenable nakedly singular spacetimes. We also demonstrate that the dilatonic-charged Ellis-Bronnikov solution admits a parameter range under which the solution represents a regular wormhole spacetime in the two-sided asymptotically flat regions.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.103.024004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a method to generate static solutions in the Einstein-Maxwell system with a (phantom) dilaton field in $n(\ge 4)$-dimensions, based upon the symmetry of the target space for the nonlinear sigma model. Unlike the conventional Einstein-Maxwell-dilaton system, there appears a critical value of the coupling constant for a phantom dilaton field. In the noncritical case, the target space is $\mathbb R\times {\rm SL}(2,\mathbb R)/H$ with the maximal subgroup $H=\{{\rm SO}(2), {\rm SO}(1,1)\}$, whereas in the critical case the target space becomes a symmetric pp-wave and the corresponding Killing vectors form a non-semisimple algebra. In either case, we apply the formalism to charge up the neutral solutions and show the analytical expression for dilatonic charged versions of (i) the Fisher solution, (ii) the Gibbons solution, and (iii) the Ellis-Bronnikov solution. We discuss global structures of these solutions in detail. It turns out that some solutions contained in the Fisher and Gibbons classes possess the parallelly propagated (p.p) curvature singularities in the parameter region where all the scalar curvature invariants remain bounded. These p.p curvature singularities are not veiled by a horizon, thrusting them into physically untenable nakedly singular spacetimes. We also demonstrate that the dilatonic-charged Ellis-Bronnikov solution admits a parameter range under which the solution represents a regular wormhole spacetime in the two-sided asymptotically flat regions.
被虚标量场困扰的静态时空。2扩张性带电解
我们提出了一种基于非线性sigma模型目标空间的对称性,在$n(\ge 4)$-维(幻影)膨胀场的Einstein-Maxwell系统中生成静态解的方法。与传统的爱因斯坦-麦克斯韦膨胀系统不同,虚膨胀场存在一个耦合常数的临界值。在非临界情况下,目标空间为$\mathbb R\乘以{\ mathbb R}(2,\mathbb R)/H$,最大子群$H=\{{\rm SO}(2), {\rm SO}(1,1)\}$,而在临界情况下,目标空间成为对称pp-波,相应的kill向量形成非半简单代数。在任何一种情况下,我们都应用形式主义对中性解进行充电,并给出(i) Fisher解,(ii) Gibbons解和(iii) Ellis-Bronnikov解的扩张带电版本的解析表达式。我们详细讨论了这些解决方案的全局结构。在所有标量曲率不变量保持有界的参数区域中,Fisher和Gibbons类中的某些解具有平行传播(p.p)曲率奇点。这些p.p曲率奇点没有被视界所掩盖,将它们推入物理上站不住脚的赤裸裸的奇异时空。我们还证明了带扩张电荷的Ellis-Bronnikov解允许一个参数范围,在该范围内,该解表示在双面渐近平坦区域中的规则虫洞时空。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信