Arrhythmia Classification Using Radial Basis Function Network With Selective Features From Empirical Mode Decomposition

Pub Date : 2021-01-01 DOI:10.4018/ijcini.2021010104
Saumendra Kumar Mohapatra, M. Mohanty
{"title":"Arrhythmia Classification Using Radial Basis Function Network With Selective Features From Empirical Mode Decomposition","authors":"Saumendra Kumar Mohapatra, M. Mohanty","doi":"10.4018/ijcini.2021010104","DOIUrl":null,"url":null,"abstract":"In this piece of work, the authors have attempted to classify four types of long duration arrhythmia electrocardiograms (ECG) using radial basis function network (RBFN). The data is taken from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database, and features are extracted using empirical mode decomposition (EMD) technique. For most informative contents average power (AP) and coefficient of dispersion (CD) are evaluated from six intrinsic mode function (IMFs) of EMD. Principal component analysis (PCA) is used for feature reduction for effective classification using RBFN. The performance is shown in the result section, and it is found that the classification accuracy is 95.98%.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.2021010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this piece of work, the authors have attempted to classify four types of long duration arrhythmia electrocardiograms (ECG) using radial basis function network (RBFN). The data is taken from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database, and features are extracted using empirical mode decomposition (EMD) technique. For most informative contents average power (AP) and coefficient of dispersion (CD) are evaluated from six intrinsic mode function (IMFs) of EMD. Principal component analysis (PCA) is used for feature reduction for effective classification using RBFN. The performance is shown in the result section, and it is found that the classification accuracy is 95.98%.
分享
查看原文
基于经验模态分解选择性特征的径向基函数网络的心律失常分类
在这项工作中,作者尝试使用径向基函数网络(RBFN)对四种类型的长时程心律失常心电图(ECG)进行分类。数据来自麻省理工学院-贝斯以色列医院(MIT-BIH)心律失常数据库,并使用经验模式分解(EMD)技术提取特征。对于大多数信息内容,平均功率(AP)和色散系数(CD)由EMD的六个本征模态函数(IMFs)求得。采用主成分分析(PCA)进行特征约简,实现RBFN的有效分类。结果部分显示了性能,发现分类准确率为95.98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信