{"title":"Value-driven Synthesis for Neural Network ASICs","authors":"Zhiyuan Yang, Ankur Srivastava","doi":"10.1145/3218603.3218634","DOIUrl":null,"url":null,"abstract":"In order to enable low power and high performance evaluation of neural network (NN) applications, we investigate new design methodologies for synthesizing neural network ASICs (NN-ASICs). An NN-ASIC takes a trained NN and implements a chip with customized optimization. Knowing the NN topology and weights allows us to develop unique optimization schemes which are not available to regular ASICs. In this work, we investigate two types of value-driven optimized multipliers which exploit the knowledge of synaptic weights and we develop an algorithm to synthesize the multiplication of trained NNs using these special multipliers instead of general ones. The proposed method is evaluated using several Deep Neural Networks. Experimental results demonstrate that compared to traditional NNPs, our proposed NN-ASICs can achieve up to 6.5x and 55x improvement in performance and energy efficiency (i.e. inverse of Energy-Delay-Product), respectively.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In order to enable low power and high performance evaluation of neural network (NN) applications, we investigate new design methodologies for synthesizing neural network ASICs (NN-ASICs). An NN-ASIC takes a trained NN and implements a chip with customized optimization. Knowing the NN topology and weights allows us to develop unique optimization schemes which are not available to regular ASICs. In this work, we investigate two types of value-driven optimized multipliers which exploit the knowledge of synaptic weights and we develop an algorithm to synthesize the multiplication of trained NNs using these special multipliers instead of general ones. The proposed method is evaluated using several Deep Neural Networks. Experimental results demonstrate that compared to traditional NNPs, our proposed NN-ASICs can achieve up to 6.5x and 55x improvement in performance and energy efficiency (i.e. inverse of Energy-Delay-Product), respectively.