Shared Subscribe Hyper Simulation Optimization (SUBHSO) Algorithm for Clustering Big Data – Using Big Databases of Iran Electricity Market

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Mesbaholdin Salami, F. Sobhani, M. Ghazizadeh
{"title":"Shared Subscribe Hyper Simulation Optimization (SUBHSO) Algorithm for Clustering Big Data – Using Big Databases of Iran Electricity Market","authors":"Mesbaholdin Salami, F. Sobhani, M. Ghazizadeh","doi":"10.2478/acss-2019-0007","DOIUrl":null,"url":null,"abstract":"Abstract Many real world problems have big data, including recorded fields and/or attributes. In such cases, data mining requires dimension reduction techniques because there are serious challenges facing conventional clustering methods in dealing with big data. The subspace selection method is one of the most important dimension reduction techniques. In such methods, a selected set of subspaces is substituted for the general dataset of the problem and clustering is done using this set. This article introduces the Shared Subscribe Hyper Simulation Optimization (SUBHSO) algorithm to introduce the optimized cluster centres to a set of subspaces. SUBHSO uses an optimization loop for modifying and optimizing the coordinates of the cluster centres with the particle swarm optimization (PSO) and the fitness function calculation using the Monte Carlo simulation. The case study on the big data of Iran electricity market (IEM) has shown the improvement of the defined fitness function, which represents the cluster cohesion and separation relative to other dimension reduction algorithms.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"173 1","pages":"49 - 60"},"PeriodicalIF":0.5000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2019-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Many real world problems have big data, including recorded fields and/or attributes. In such cases, data mining requires dimension reduction techniques because there are serious challenges facing conventional clustering methods in dealing with big data. The subspace selection method is one of the most important dimension reduction techniques. In such methods, a selected set of subspaces is substituted for the general dataset of the problem and clustering is done using this set. This article introduces the Shared Subscribe Hyper Simulation Optimization (SUBHSO) algorithm to introduce the optimized cluster centres to a set of subspaces. SUBHSO uses an optimization loop for modifying and optimizing the coordinates of the cluster centres with the particle swarm optimization (PSO) and the fitness function calculation using the Monte Carlo simulation. The case study on the big data of Iran electricity market (IEM) has shown the improvement of the defined fitness function, which represents the cluster cohesion and separation relative to other dimension reduction algorithms.
大数据聚类的共享订阅超模拟优化(SUBHSO)算法——基于伊朗电力市场大数据库
许多现实世界的问题都有大数据,包括记录的字段和/或属性。在这种情况下,数据挖掘需要降维技术,因为传统的聚类方法在处理大数据时面临着严重的挑战。子空间选择方法是最重要的降维技术之一。在这种方法中,一组选定的子空间被替换为问题的一般数据集,并使用该集合进行聚类。本文介绍了共享订阅超模拟优化(SUBHSO)算法,将优化后的集群中心引入一组子空间。该算法采用粒子群优化(PSO)和蒙特卡罗模拟适应度函数计算方法,通过优化循环对簇中心坐标进行修改和优化。通过对伊朗电力市场(IEM)大数据的实例研究表明,相对于其他降维算法,改进了代表聚类内聚和分离的定义适应度函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信