Fixed Point Theory for Three ÃÂâÂÂWeak Contraction Functions

H. AbdElGhaffar
{"title":"Fixed Point Theory for Three ÃÂâÂÂWeak Contraction Functions","authors":"H. AbdElGhaffar","doi":"10.4172/2168-9679.1000338","DOIUrl":null,"url":null,"abstract":"In 2009 Qingnian Zhang and Yisheng Song proved fixed point theory for two φ–weak contraction functions. We generalize this result by finding fixed point and coincidence point for three single-valued φ–weak contraction T1, T2, T3 defined on a complete metric space.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"174 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 2009 Qingnian Zhang and Yisheng Song proved fixed point theory for two φ–weak contraction functions. We generalize this result by finding fixed point and coincidence point for three single-valued φ–weak contraction T1, T2, T3 defined on a complete metric space.
三种收缩函数的不动点理论ÃÂâÂÂWeak
2009年张庆年、宋一生证明了两个φ -弱收缩函数的不动点理论。我们推广了这一结果,找到了定义在完备度量空间上的三个单值φ -弱收缩T1, T2, T3的不动点和重合点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信