On Numerical Modeling of Equal Channel Angular Extrusion of Ultra High Molecular Weight Polyethylene

Kostiantyn Vasylevskyi, K. Miroshnichenko, Stanislav Buklovskyi, I. Tsukrov, Hannah Grover, D. V. Citters
{"title":"On Numerical Modeling of Equal Channel Angular Extrusion of Ultra High Molecular Weight Polyethylene","authors":"Kostiantyn Vasylevskyi, K. Miroshnichenko, Stanislav Buklovskyi, I. Tsukrov, Hannah Grover, D. V. Citters","doi":"10.1115/IMECE2020-24111","DOIUrl":null,"url":null,"abstract":"\n Ultra high molecular weight polyethylene (UHMWPE) is widely used in biomedical applications, e.g. as a bearing surface in total joint arthroplasty. Recently, equal channel angular extrusion (ECAE) was proposed as a processing method to achieve higher molecular entanglement and superior mechanical properties of this material. Numerical modeling can be utilized to evaluate the influence of such important manufacturing parameters as the extrusion rate, temperature, geometry of the die, back pressure and friction effects in the ECAE of polyethylenes.\n In this paper we focus on the development of efficient FE models of ECAE for UHMWPE. We study the applicability of the available constitutive models traditionally used in polymer mechanics for UHMWPE, evaluate the importance of the proper choice of the friction parameters between the billet and the die, and compare the accuracy of predictions between 2D (plane strain) and 3D models.\n Our studies demonstrate that the choice of the constitutive model is extremely important for the accuracy of numerical modeling predictions. It is also shown that the friction coefficient significantly influences the punch force and that 2D plane strain assumption can become inaccurate in the presence of friction between the billet and the extrusion channel.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-24111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra high molecular weight polyethylene (UHMWPE) is widely used in biomedical applications, e.g. as a bearing surface in total joint arthroplasty. Recently, equal channel angular extrusion (ECAE) was proposed as a processing method to achieve higher molecular entanglement and superior mechanical properties of this material. Numerical modeling can be utilized to evaluate the influence of such important manufacturing parameters as the extrusion rate, temperature, geometry of the die, back pressure and friction effects in the ECAE of polyethylenes. In this paper we focus on the development of efficient FE models of ECAE for UHMWPE. We study the applicability of the available constitutive models traditionally used in polymer mechanics for UHMWPE, evaluate the importance of the proper choice of the friction parameters between the billet and the die, and compare the accuracy of predictions between 2D (plane strain) and 3D models. Our studies demonstrate that the choice of the constitutive model is extremely important for the accuracy of numerical modeling predictions. It is also shown that the friction coefficient significantly influences the punch force and that 2D plane strain assumption can become inaccurate in the presence of friction between the billet and the extrusion channel.
超高分子量聚乙烯等通道角挤压的数值模拟
超高分子量聚乙烯(UHMWPE)广泛应用于生物医学领域,例如作为全关节置换术的承载面。最近,等通道角挤压(ECAE)被提出作为一种加工方法,以获得更高的分子纠缠度和优越的力学性能。数值模拟可以用来评价挤出速度、温度、模具几何形状、背压和摩擦效应等重要制造参数对聚乙烯ECAE的影响。本文的重点是开发超高分子量聚乙烯的高效有限元模型。我们研究了传统聚合物力学中可用的本构模型对超高分子量聚乙烯的适用性,评估了正确选择坯料与模具之间摩擦参数的重要性,并比较了二维(平面应变)模型和三维模型预测的准确性。我们的研究表明,本构模型的选择对数值模拟预测的准确性至关重要。研究还表明,摩擦系数对冲孔力有显著影响,在坯料与挤压通道存在摩擦的情况下,二维平面应变假设会变得不准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信