survHE: Survival Analysis for Health Economic Evaluation and Cost-Effectiveness Modeling

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
G. Baio
{"title":"survHE: Survival Analysis for Health Economic Evaluation and Cost-Effectiveness Modeling","authors":"G. Baio","doi":"10.18637/jss.v095.i14","DOIUrl":null,"url":null,"abstract":"Survival analysis features heavily as an important part of health economic evaluation, an increasingly important component of medical research. In this setting, it is important to estimate the mean time to the survival endpoint using limited information (typically from randomized trials) and thus it is useful to consider parametric survival models. In this paper, we review the features of the R package survHE, specifically designed to wrap several tools to perform survival analysis for economic evaluation. In particular, survHE embeds both a standard, frequentist analysis (through the R package flexsurv) and a Bayesian approach, based on Hamiltonian Monte Carlo (via the R package rstan) or integrated nested Laplace approximation (with the R package INLA). Using this composite approach, we obtain maximum flexibility and are able to pre-compile a wide range of parametric models, with a view of simplifying the modelers' work and allowing them to move away from non-optimal work flows, including spreadsheets (e.g., Microsoft Excel).","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"48 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v095.i14","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 19

Abstract

Survival analysis features heavily as an important part of health economic evaluation, an increasingly important component of medical research. In this setting, it is important to estimate the mean time to the survival endpoint using limited information (typically from randomized trials) and thus it is useful to consider parametric survival models. In this paper, we review the features of the R package survHE, specifically designed to wrap several tools to perform survival analysis for economic evaluation. In particular, survHE embeds both a standard, frequentist analysis (through the R package flexsurv) and a Bayesian approach, based on Hamiltonian Monte Carlo (via the R package rstan) or integrated nested Laplace approximation (with the R package INLA). Using this composite approach, we obtain maximum flexibility and are able to pre-compile a wide range of parametric models, with a view of simplifying the modelers' work and allowing them to move away from non-optimal work flows, including spreadsheets (e.g., Microsoft Excel).
生存分析用于健康经济评价和成本-效果模型
生存分析作为健康经济评价的重要组成部分,在医学研究中占有越来越重要的地位。在这种情况下,使用有限的信息(通常来自随机试验)估计到生存终点的平均时间是很重要的,因此考虑参数化生存模型是有用的。在本文中,我们回顾了R包survHE的功能,专门设计用于包装几个工具来执行经济评估的生存分析。特别是,survHE嵌入了标准的频率分析(通过R包flexsurv)和基于哈密顿蒙特卡罗(通过R包rstan)或集成嵌套拉普拉斯近似(使用R包INLA)的贝叶斯方法。使用这种复合方法,我们获得了最大的灵活性,并且能够预编译广泛的参数化模型,以简化建模者的工作,并允许他们远离非最佳工作流程,包括电子表格(例如,Microsoft Excel)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信