Perverse 𝔽p-sheaves on the affine Grassmannian

IF 1.2 1区 数学 Q1 MATHEMATICS
Robert Cass
{"title":"Perverse 𝔽p-sheaves on the affine Grassmannian","authors":"Robert Cass","doi":"10.1515/crelle-2021-0089","DOIUrl":null,"url":null,"abstract":"Abstract For a reductive group over an algebraically closed field of characteristic p>0{p>0} we construct the abelian category of perverse 𝔽p{\\mathbb{F}_{p}}-sheaves on the affine Grassmannian that are equivariant with respect to the action of the positive loop group. We show this is a symmetric monoidal category, and then we apply a Tannakian formalism to show this category is equivalent to the category of representations of a certain affine monoid scheme. We also show that our work provides a geometrization of the inverse of the mod p Satake isomorphism. Along the way we prove that affine Schubert varieties are globally F-regular and we apply Frobenius splitting techniques to the theory of perverse 𝔽p{\\mathbb{F}_{p}}-sheaves.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"23 1","pages":"219 - 272"},"PeriodicalIF":1.2000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2021-0089","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract For a reductive group over an algebraically closed field of characteristic p>0{p>0} we construct the abelian category of perverse 𝔽p{\mathbb{F}_{p}}-sheaves on the affine Grassmannian that are equivariant with respect to the action of the positive loop group. We show this is a symmetric monoidal category, and then we apply a Tannakian formalism to show this category is equivalent to the category of representations of a certain affine monoid scheme. We also show that our work provides a geometrization of the inverse of the mod p Satake isomorphism. Along the way we prove that affine Schubert varieties are globally F-regular and we apply Frobenius splitting techniques to the theory of perverse 𝔽p{\mathbb{F}_{p}}-sheaves.
反常的𝔽p-sheaves仿射格拉斯曼年
摘要对于特征为p>0{p>0}的代数闭域上的约化群,我们在仿射Grassmannian上构造了逆𝔽p{\mathbb{F}_{p}}-sheaves的阿贝尔范畴,该范畴对正环群的作用是等变的。我们证明这是一个对称的单群范畴,然后我们应用Tannakian的形式来证明这个范畴等价于某个仿射单群方案的表示范畴。我们还证明了我们的工作提供了模p的逆的几何化。在此过程中,我们证明了仿射Schubert变体是全局F正则的,并将Frobenius分裂技术应用于反常𝔽p{\mathbb{F}_{p}}-束理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信